ترغب بنشر مسار تعليمي؟ اضغط هنا

153 - N. Moure , S. Haas , 2014
While there are well established methods to study delocalization transitions of single particles in random systems, it remains a challenging problem how to characterize many body delocalization transitions. Here, we use a generalized real-space renor malization group technique to study the anisotropic Heisenberg model with long-range interactions, decaying with a power $alpha$, which are generated by placing spins at random positions along the chain. This method permits a large-scale finite-size scaling analysis. We examine the full distribution function of the excitation energy gap from the ground state and observe a crossover with decreasing $alpha$. At $alpha_c$ the full distribution coincides with a critical function. Thereby, we find strong evidence for the existence of a many body localization transition in disordered antiferromagnetic spin chains with long range interactions.
Dilute magnetic impurities in a disordered Fermi liquid are considered close to the Anderson metal-insulator transition (AMIT). Critical Power law correlations between electron wave functions at different energies in the vicinity of the AMIT result i n the formation of pseudogaps of the local density of states. Magnetic impurities can remain unscreened at such sites. We determine the density of the resulting free magnetic moments in the zero temperature limit. While it is finite on the insulating side of the AMIT, it vanishes at the AMIT, and decays with a power law as function of the distance to the AMIT. Since the fluctuating spins of these free magnetic moments break the time reversal symmetry of the conduction electrons, we find a shift of the AMIT, and the appearance of a semimetal phase. The distribution function of the Kondo temperature $T_{K}$ is derived at the AMIT, in the metallic phase and in the insulator phase. This allows us to find the quantum phase diagram in an external magnetic field $B$ and at finite temperature $T$. We calculate the resulting magnetic susceptibility, the specific heat, and the spin relaxation rate as function of temperature. We find a phase diagram with finite temperature transitions between insulator, critical semimetal, and metal phases. These new types of phase transitions are caused by the interplay between Kondo screening and Anderson localization, with the latter being shifted by the appearance of the temperature-dependent spin-flip scattering rate. Accordingly, we name them Kondo-Anderson transitions (KATs).
127 - S. Kettemann , E. R. Mucciolo , 2009
It is well-known that magnetic impurities can change the symmetry class of disordered metallic systems by breaking spin and time-reversal symmetry. At low temperature these symmetries can be restored by Kondo screening. It is also known that at the A nderson metal-insulator transition, wave functions develop multifractal fluctuations with power law correlations. Here, we consider the interplay of these two effects. We show that multifractal correlations open local pseudogaps at the Fermi energy at some random positions in space. When dilute magnetic impurities are at these locations, Kondo screening is strongly suppressed. We find that when the exchange coupling J is smaller than a certain value J*, the metal-insulator transition point extends to a critical region in the disorder strength parameter and to a band of critical states. The width of this critical region increases with a power of the concentration of magnetic impurities.
The crossover between a free magnetic moment phase and a Kondo phase in low dimensional disordered metals with dilute magnetic impurities is studied. We perform a finite size scaling analysis of the distribution of the Kondo temperature as obtained from a numerical renormalization group calculation of the local magnetic susceptibility and from the solution of the self-consistent Nagaoka-Suhl equation. We find a sizable fraction of free (unscreened) magnetic moments when the exchange coupling falls below a disorder-dependent critical value $J_{rm c}$. Our numerical results show that between the free moment phase due to Anderson localization and the Kondo screened phase there is a phase where free moments occur due to the appearance of random local pseudogaps at the Fermi energy whose width and power scale with the elastic scattering rate $1/tau$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا