ترغب بنشر مسار تعليمي؟ اضغط هنا

Emission line diagnostic diagrams probing the ionization sources in galaxies, such as the Baldwin-Phillips-Terlevich (BPT) diagram, have been used extensively to distinguish AGN from purely star-forming galaxies. Yet, they remain poorly understood at higher redshifts. We shed light on this issue with an empirical approach based on a z~0 reference sample built from ~300,000 SDSS galaxies, from which we mimic selection effects due to typical emission line detection limits at higher redshift. We combine this low-redshift reference sample with a simple prescription for luminosity evolution of the global galaxy population to predict the loci of high-redshift galaxies on the BPT and Mass-Excitation (MEx) diagnostic diagrams. The predicted bivariate distributions agree remarkably well with direct observations of galaxies out to z~1.5, including the observed stellar mass-metallicity (MZ) relation evolution. As a result, we infer that high-redshift star-forming galaxies are consistent with having normal ISM properties out to z~1.5, after accounting for selection effects and line luminosity evolution. Namely, their optical line ratios and gas-phase metallicities are comparable to that of low-redshift galaxies with equivalent emission-line luminosities. In contrast, AGN narrow-line regions may show a shift toward lower metallicities at higher redshift. While a physical evolution of the ISM conditions is not ruled out for purely star-forming galaxies, and may be more important starting at z>2, we find that reliably quantifying this evolution is hindered by selections effects. The recipes provided here may serve as a basis for future studies toward this goal. Code to predict the loci of galaxies on the BPT and MEx diagnostic diagrams, and the MZ relation as a function of emission line luminosity limits, is made publicly available.
We characterize the incidence of active galactic nuclei (AGNs) is 0.3 < z < 1 star-forming galaxies by applying multi-wavelength AGN diagnostics (X-ray, optical, mid-infrared, radio) to a sample of galaxies selected at 70-micron from the Far-Infrared Deep Extragalactic Legacy survey (FIDEL). Given the depth of FIDEL, we detect normal galaxies on the specific star formation rate (sSFR) sequence as well as starbursting systems with elevated sSFR. We find an overall high occurrence of AGN of 37+/-3%, more than twice as high as in previous studies of galaxies with comparable infrared luminosities and redshifts but in good agreement with the AGN fraction of nearby (0.05 < z < 0.1) galaxies of similar infrared luminosities. The more complete census of AGNs comes from using the recently developed Mass-Excitation (MEx) diagnostic diagram. This optical diagnostic is also sensitive to X-ray weak AGNs and X-ray absorbed AGNs, and reveals that absorbed active nuclei reside almost exclusively in infrared-luminous hosts. The fraction of galaxies hosting an AGN appears to be independent of sSFR and remains elevated both on the sSFR sequence and above. In contrast, the fraction of AGNs that are X-ray absorbed increases substantially with increasing sSFR, possibly due to an increased gas fraction and/or gas density in the host galaxies.
We introduce the Mass-Excitation (MEx) diagnostic to identify active galactic nuclei (AGN) in galaxies at intermediate redshift. In the absence of near-infrared spectroscopy, necessary to use traditional nebular line diagrams at z>0.4, we demonstrate that combining [OIII]5007/Hbeta and stellar mass successfully distinguishes between star formation and AGN emission. The MEx classification scheme relies on a novel probabilistic approach splitting galaxies into sub-categories with more confidence than alternative high-z diagnostic diagrams. It recognizes that galaxies near empirical boundaries on traditional diagrams have an uncertain classification and thus a non-zero probability of belonging to more than one category. An outcome of this work is a system of statistical weights that can be used to compute global properties of galaxy samples. We apply the MEx diagram to 2,812 galaxies at 0.3<z<1 in the Great Observatories Origins Deep Survey North and Extended Groth Strip fields, and compare it to an independent X-ray classification scheme. We identify Compton-thick AGN candidates with large X-ray absorption, which we infer from the luminosity ratio between hard X-ray emission and [OIII]5007, a nearly isotropic tracer of AGN. X-ray stacking of sources that were not detected individually supports the validity of the MEx diagram and yields a very flat spectral slope for the Compton-thick candidates (Gamma~0.4, unambiguously indicating absorbed AGN). We present evidence that composite galaxies, which are difficult to identify with alternative high-redshift diagrams, host the majority of the highly-absorbed AGN. Our findings suggest that the interstellar medium of the host galaxy provides significant absorption in addition to the torus invoked in AGN unified models.
65 - S. Juneau 2009
We present a detailed analysis of the relation between infrared luminosity and molecular line luminosity, for a variety of molecular transitions, using a sample of 34 nearby galaxies spanning a broad range of infrared luminosities (10^{10} < L_{IR} < 10^{12.5} L_sun). We show that the power-law index of the relation is sensitive to the critical density of the molecular gas tracer used, and that the dominant driver in observed molecular line ratios in galaxies is the gas density. As most nearby ultraluminous infrared galaxies (ULIRGs) exhibit strong signatures of active galactic nuclei (AGN) in their center, we revisit previous claims questioning the reliability of HCN as a probe of the dense gas responsible for star formation in the presence of AGN. We find that the enhanced HCN(1-0)/CO(1-0) luminosity ratio observed in ULIRGs can be successfully reproduced using numerical models with fixed chemical abundances and without AGN-induced chemistry effects. We extend this analysis to a total of ten molecular line ratios by combining the following transitions: CO(1-0), HCO+(1-0), HCO+(3-2), HCN(1-0), and HCN(3-2). Our results suggest that AGNs reside in systems with higher dense gas fraction, and that chemistry or other effects associated with their hard radiation field may not dominate (NGC 1068 is one exception). Galaxy merger could be the underlying cause of increased dense gas fraction and the evolutionary stage of such mergers may be another determinant of the HCN/CO luminosity ratio.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا