ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhanced Dense Gas Fraction in Ultra-Luminous Infrared Galaxies

65   0   0.0 ( 0 )
 نشر من قبل St\\'ephanie Juneau
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. Juneau




اسأل ChatGPT حول البحث

We present a detailed analysis of the relation between infrared luminosity and molecular line luminosity, for a variety of molecular transitions, using a sample of 34 nearby galaxies spanning a broad range of infrared luminosities (10^{10} < L_{IR} < 10^{12.5} L_sun). We show that the power-law index of the relation is sensitive to the critical density of the molecular gas tracer used, and that the dominant driver in observed molecular line ratios in galaxies is the gas density. As most nearby ultraluminous infrared galaxies (ULIRGs) exhibit strong signatures of active galactic nuclei (AGN) in their center, we revisit previous claims questioning the reliability of HCN as a probe of the dense gas responsible for star formation in the presence of AGN. We find that the enhanced HCN(1-0)/CO(1-0) luminosity ratio observed in ULIRGs can be successfully reproduced using numerical models with fixed chemical abundances and without AGN-induced chemistry effects. We extend this analysis to a total of ten molecular line ratios by combining the following transitions: CO(1-0), HCO+(1-0), HCO+(3-2), HCN(1-0), and HCN(3-2). Our results suggest that AGNs reside in systems with higher dense gas fraction, and that chemistry or other effects associated with their hard radiation field may not dominate (NGC 1068 is one exception). Galaxy merger could be the underlying cause of increased dense gas fraction and the evolutionary stage of such mergers may be another determinant of the HCN/CO luminosity ratio.

قيم البحث

اقرأ أيضاً

138 - A. Omont , Chentao Yang , P. Cox 2013
Using IRAM PdBI we report the detection of H2O in six new lensed ultra-luminous starburst galaxies at high redshift, discovered in the Herschel H-ATLAS survey. The sources are detected either in the 2_{02}-1_{11} or 2_{11}-2_{02} H_2O emission lines with integrated line fluxes ranging from 1.8 to 14 Jy.km/s. The corresponding apparent luminosities are mu x L_H2O ~ 3-12 x 10^8 Lo, where mu is the lensing magnification factor (3 < mu < 12). These results confirm that H2O lines are among the strongest molecular lines in such galaxies, with intensities almost comparable to those of the high-J CO lines, and same profiles and line widths (200-900 km/s) as the latter. With the current sensitivity of PdBI, H2O can therefore easily be detected in high-z lensed galaxies (with F(500um) > 100 mJy) discovered in the Herschel surveys. Correcting the luminosities for lensing amplification, L_H2O is found to have a strong dependence on the IR luminosity, varying as ~L_IR^{1.2}. This relation which needs to be confirmed with better statistics, may indicate a role of radiative (IR) excitation of the H2O lines, and implies that high-z galaxies with L_IR >~ 10^13 Lo tend to be very strong emitters in H2O, that have no equivalent in the local universe.
229 - Alexandra Pope 2013
We explore the relationship between gas, dust and star formation in a sample of 12 ultra-luminous infrared galaxies (ULIRGs) at high redshift compared to a similar sample of local galaxies. We present new CO observations and/or Spitzer mid-IR spectro scopy for 6 70 micron selected galaxies at z~1 in order to quantify the properties of the molecular gas reservoir, the contribution of an active galactic nuclei (AGN) to the mid-IR luminosity and the star formation efficiency (SFE=LIR/LCO). The mid-IR spectra show strong polycyclic aromatic hydrocarbon (PAH) emission and our spectral decomposition suggests that the AGN makes a minimal contribution (<25%) to the mid-IR luminosity. The 70 micron selected ULIRGs which we find to be spectroscopic close pairs, are observed to have high SFE, similar to local ULIRGs and high redshift submillimeter galaxies, consistent with enhanced IR luminosity due to an ongoing major merger. Combined with existing observations of local and high redshift ULIRGs, we further compare the PAH, IR and CO luminosities. We show that the ratio LPAH6.2/LIR decreases with increasing IR luminosity for both local and high redshift galaxies but the trend for high redshift galaxies is shifted to higher IR luminosities; the average LPAH6.2/LIR ratio at a given LIR is ~3 times higher at high redshift. When we normalize by the molecular gas, we find this trend to be uniform for galaxies at all redshifts and that the molecular gas is correlated with the PAH dust emission.The similar trends seen in the [CII] to molecular gas ratios in other studies suggests that PAH emission, like [CII], continues to be a good tracer of photodissociation regions even at high redshift. Together the CO, PAH and far-IR fine structure lines should be useful for constraining the interstellar medium conditions in high redshift galaxies.
A new analysis of high-resolution data from the Atacama Large Millimeter/submillimeter Array (ALMA) for 5 luminous or ultra-luminous infrared galaxies gives a slope for the Kennicutt-Schmidt (KS) relation equal to $1.74^{+0.09}_{rm -0.07}$ for gas su rface densities $Sigma_{rm mol}>10^3;M_odot$ pc$^{-2}$ and an assumed constant CO-to-H$_2$ conversion factor. The velocity dispersion of the CO line, $sigma_v$, scales approximately as the inverse square root of $Sigma_{rm mol}$, making the empirical gas scale height determined from $Hsim0.5sigma^2/(pi GSigma_{rm mol})$ nearly constant, 150-190 pc, over 1.5 orders of magnitude in $Sigma_{rm mol}$. This constancy of $H$ implies that the average midplane density, which is presumably dominated by CO-emitting gas for these extreme star-forming galaxies, scales linearly with the gas surface density, which, in turn, implies that the gas dynamical rate (the inverse of the free-fall time) varies with $Sigma_{rm mol}^{1/2}$, thereby explaining most of the super-linear slope in the KS relation. Consistent with these relations, we also find that the mean efficiency of star formation per free-fall time is roughly constant, 5%-7%, and the gas depletion time decreases at high $Sigma_{rm mol}$, reaching only $sim 16$ Myr at $Sigma_{rm mol}sim10^4;M_odot$ pc$^{-2}$. The variation of $sigma_v$ with $Sigma_{rm mol}$ and the constancy of $H$ are in tension with some feedback-driven models, which predict $sigma_v$ to be more constant and $H$ to be more variable. However, these results are consistent with simulations in which large-scale gravity drives turbulence through a feedback process that maintains an approximately constant Toomre $Q$ instability parameter.
We analyze the mid-infrared (MIR) spectra of ultraluminous infrared galaxies (ULIRGs) observed with the Spitzer Space Telescopes Infrared Spectrograph. Dust emission dominates the MIR spectra of ULIRGs, and the reprocessed radiation that emerges is i ndependent of the underlying heating spectrum. Instead, the resulting emission depends sensitively on the geometric distribution of the dust, which we diagnose with comparisons of numerical simulations of radiative transfer. Quantifying the silicate emission and absorption features that appear near 10 and 18um requires a reliable determination of the continuum, and we demonstrate that including a measurement of the continuum at intermediate wavelength (between the features) produces accurate results at all optical depths. With high-quality spectra, we successfully use the silicate features to constrain the dust chemistry. The observations of the ULIRGs and local sightlines require dust that has a relatively high 18/10um absorption ratio of the silicate features (around 0.5). Specifically, the cold dust of Ossenkopf et al. (1992) is consistent with the observations, while other dust models are not. We use the silicate feature strengths to identify two families of ULIRGs, in which the dust distributions are fundamentally different. Optical spectral classifications are related to these families. In ULIRGs that harbor an active galactic nucleus, the spectrally broad lines are detected only when the nuclear surroundings are clumpy. In contrast, the sources of lower ionization optical spectra are deeply embedded in smooth distributions of optically thick dust.
In this work we conclude the analysis of our CO line survey of Luminous Infrared Galaxies (LIRGs: L_{IR}>=10^{11}L_{sol}) in the local Universe (Paper,I), by focusing on the influence of their average ISM properties on the total molecular gas mass es timates via the so-called X_{co}=M(H_2)/L_{co,1-0} factor. One-phase radiative transfer models of the global CO Spectral Line Energy Distributions (SLEDs) yield an X_{co} distribution with: <X_{co}>sim(0.6+/-0.2) M_{sol}(K km s^{-1} pc^2)^{-1} over a significant range of average gas densities, temperatures and dynamical states. The latter emerges as the most important parameter in determining X_{co}, with unbound states yielding low values and self-gravitating states the highest ones. Nevertheless in many (U)LIRGs where available higher-J CO lines (J=3--2, 4--3, and/or J=6--5) or HCN line data from the literature allow a separate assessment of the gas mass at high densities (>=10^{4} cm^{-3}) rather than a simple one-phase analysis we find that {it near-Galactic X_{co} (3-6), M_sol,(K,km^{-1},pc^2)^{-1} values become possible.} We further show that in the highly turbulent molecular gas in ULIRGs a high-density component will be common and can be massive enough for its high X_{co} to dominate the average value for the entire galaxy. ......... ...this may have thus resulted to systematic underestimates of molecular gas mass in ULIRGs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا