ترغب بنشر مسار تعليمي؟ اضغط هنا

Turbulence is thought to be a key driver of the evolution of protoplanetary disks, regulating the mass accretion process, the transport of angular momentum, and the growth of dust particles. We intend to determine the magnitude of the turbulent mot ions in the outer parts (> 100 AU) of the disk surrounding DM Tau. Turbulent motions can be constrained by measuring the nonthermal broadening of line emission from heavy molecules. We used the IRAM Plateau de Bure interferometer to study emission from the CS molecule in the disk of DM Tau. High spatial (1.4 x 1 ) and spectral resolution (0.126 km/s) CS J=3-2 images provide constraints on the molecule distribution and velocity structure of the disk. A low sensitivity CS J=5-4 image was used in conjunction to evaluate the excitation conditions. We analyzed the data in terms of two parametric disk models, and compared the results with detailed time-dependent chemical simulations. The CS data confirm the relatively low temperature suggested by observations of other simple molecules. The intrinsic linewidth derived from the CS J=3-2 data is much larger than expected from pure thermal broadening. The magnitude of the derived nonthermal component depends only weakly on assumptions about the location of the CS molecules with respect to the disk plane. Our results indicate turbulence with a Mach number around 0.4 - 0.5 in the molecular layer. Geometrical constraints suggest that this layer is located near one scale height, in reasonable agreement with chemical model predictions.
We use the IRAM 30-m telescope to perform a sensitive search for CN N=2-1 in 42 T Tauri or Herbig Ae systems located mostly in the Taurus-Auriga region. $^{13}$CO J=2-1 is observed simultaneously to indicate the level of confusion with the surroundin g molecular cloud. The bandpass also contains two transitions of ortho-H$_2$CO, one of SO and the C$^{17}$O J=2-1 line which provide complementary information on the nature of the emission. While $^{13}$CO is in general dominated by residual emission from the cloud, CN exhibits a high disk detection rate $> 50$% in our sample. We even report CN detection in stars for which interferometric searches failed to detect $^{12}$CO, presumably because of obscuration by a foreground, optically thick, cloud. Comparison between CN and o-H$_2$CO or SO line profiles and intensities divide the sample in two main categories. Sources with SO emission are bright and have strong H$_2$CO emission, leading in general to [H$_2$CO/CN]$ > 0.5$. Furthermore, their line profiles, combined with a priori information on the objects, suggest that the emission is coming from outflows or envelopes rather than from a circumstellar disk. On the other hand, most sources have [H$_2$CO/CN]$ < 0.3$, no SO emission, and some of them exhibit clear double-peaked profiles characteristics of rotating disks. In this second category, CN is likely tracing the proto-planetary disks. From the line flux and opacity derived from the hyperfine ratios, we constrain the outer radii of the disks, which range from 300 to 600 AU. The overall gas disk detection rate (including all molecular tracers) is $sim 68%$, and decreases for fainter continuum sources. This study shows that gas disks, like dust disks, are ubiquitous around young PMS stars in regions of isolated star formation, and that a large fraction of them have $R > 300$ AU.
41 - S.Guilloteau 2011
(Abridged) We attempt to characterize the radial distribution of dust in disks around a sample of young stars from an observational point of view, and, when possible, in a model-independent way, by using parametric laws. We used the IRAM PdBI int erferometer to provide very high angular resolution (down to 0.4 in some sources) observations of the continuum at 1.3 mm and 3 mm around a sample of T Tauri stars in the Taurus-Auriga region. The sample includes single and multiple systems, with a total of 23 individual disks. We used track-sharing observing mode to minimize the biases. We fitted these data with two kinds of models: a truncated power law model and a model presenting an exponential decay at the disk edge (viscous model). ect evidence for tidal truncation is found in the multiple systems. The temperature of the mm-emitting dust is constrained in a few systems. Unambiguous evidence for large grains is obtained by resolving out disks with very low values of the dust emissivity index Beta. In most disks that are sufficiently resolved at two different wavelengths, we find a radial dependence of Beta, which appears to increase from low values (as low as 0) at the center to about 1.7 -- 2 at the disk edge. The same behavior could apply to all studied disks. It introduces further ambiguities in interpreting the brightness profile, because the regions with apparent Beta = 0 can also be interpreted as being optically thick when their brightness temperature is high enough. Despite the added uncertainty on the dust absorption coefficient, the characteristic size of the disk appears to increase with a higher estimated star age. These results provide the first direct evidence of the radial dependence of the grain size in proto-planetary disks.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا