ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the dynamical evolution of globular clusters using our Henon-type Monte Carlo code for stellar dynamics including all relevant physics such as two-body relaxation, single and binary stellar evolution, Galactic tidal stripping, and strong int eractions such as physical collisions and binary mediated scattering. We compute a large database of several hundred models starting from broad ranges of initial conditions guided by observations of young and massive star clusters. We show that these initial conditions very naturally lead to present day clusters with properties including the central density, core radius, half-light radius, half-mass relaxation time, and cluster mass, that match well with those of the old Galactic globular clusters. In particular, we can naturally reproduce the bimodal distribution in observed core radii separating the core-collapsed vs the non core-collapsed clusters. We see that the core-collapsed clusters are those that have reached or are about to reach the equilibrium binary burning phase. The non core-collapsed clusters are still undergoing gravo-thermal contraction.
We study the dynamical evolution of globular clusters containing primordial binaries, including full single and binary stellar evolution using our Monte Carlo cluster evolution code updated with an adaptation of the single and binary stellar evolutio n codes SSE/BSE from Hurley et. al (2000, 2002). We describe the modifications we have made to the code. We present several test calculations and comparisons with existing studies to illustrate the validity of the code. We show that our code finds very good agreement with direct N-body simulations including primordial binaries and stellar evolution. We find significant differences in the evolution of the global properties of the simulated clusters using stellar evolution compared to simulations without any stellar evolution. In particular, we find that the mass loss from stellar evolution acts as a significant energy production channel simply by reducing the total gravitational binding energy and can significantly prolong the initial core contraction phase before reaching the binary-burning quasi steady state of the cluster evolution as noticed in Paper IV. We simulate a large grid of clusters varying the initial cluster mass, binary fraction, and concentration and compare properties of the simulated clusters with those of the observed Galactic globular clusters (GGCs). We find that our simulated cluster properties agree well with the observed GGC properties. We explore in some detail qualitatively different clusters in different phases of their evolution, and construct synthetic Hertzprung-Russell diagrams for these clusters.
We study the dynamical evolution of the young star cluster Arches and its dependence on the assumed initial stellar mass function (IMF). We perform many direct $N$-body simulations with various initial conditions and two different choices of IMFs. On e is a standard Kroupa IMF without any mass segregation. The other is a radially dependent IMF, as presently observed in the Arches. We find that it is unlikely for the Arches to have attained the observed degree of mass segregation at its current age starting from a standard non-segregated Kroupa IMF. We also study the possibility of a collisional runaway developing in the first $sim 2-3 rm{Myr}$ of dynamical evolution. We find that the evolution of this cluster is dramatically different depending on the choice of IMF: if a primordially mass segregated IMF is chosen, a collisional runaway should always occur between $2-3 rm{Myr}$ for a broad range of initial concentrations. In contrast, for a standard Kroupa IMF no collisional runaway is predicted. We argue that if Arches was created with a mass segregated IMF similar to what is observed today then at the current cluster age a very unusual, high-mass star should be created. However, whether a collisional runaway leads to the formation of an intermediate-mass black hole (IMBH) depends strongly on the mass loss rate via winds from massive stars. Growth of stellar mass through collisions can be quenched by strong wind mass loss. In that case, the inter-cluster as well as intra-cluster medium are expected to have a significant Helium enrichment which may be observed via Helium recombination lines. The excess amount of gas lost in winds may also be observed via X-ray observations as diffused X-ray sources.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا