ﻻ يوجد ملخص باللغة العربية
We study the dynamical evolution of globular clusters using our Henon-type Monte Carlo code for stellar dynamics including all relevant physics such as two-body relaxation, single and binary stellar evolution, Galactic tidal stripping, and strong interactions such as physical collisions and binary mediated scattering. We compute a large database of several hundred models starting from broad ranges of initial conditions guided by observations of young and massive star clusters. We show that these initial conditions very naturally lead to present day clusters with properties including the central density, core radius, half-light radius, half-mass relaxation time, and cluster mass, that match well with those of the old Galactic globular clusters. In particular, we can naturally reproduce the bimodal distribution in observed core radii separating the core-collapsed vs the non core-collapsed clusters. We see that the core-collapsed clusters are those that have reached or are about to reach the equilibrium binary burning phase. The non core-collapsed clusters are still undergoing gravo-thermal contraction.
Dynamical evolution drives globular clusters toward core collapse, which strongly shapes their internal properties. Diagnostics of core collapse have so far been based on photometry only, namely on the study of the concentration of the density profil
Numerical and observational evidence suggests that massive white dwarfs dominate the innermost regions of core-collapsed globular clusters by both number and total mass. Using NGC 6397 as a test case, we constrain the features of white dwarf populati
A self-interacting dark matter halo can experience gravothermal collapse, resulting in a central core with an ultrahigh density. It can further contract and collapse into a black hole, a mechanism proposed to explain the origin of supermassive black
We performed deep photometry of the central region of Galactic globular cluster M15 from archival Hubble Space Telescope data taken on the High Resolution Channel and Solar Blind Channel of the Advanced Camera for Surveys. Our data set consists of im
Globular clusters (GCs) in the Milky Way exhibit a well-observed bimodal distribution in core radii separating the so-called core-collapsed and non-core-collapsed clusters. Here, we use our Henon-type Monte Carlo code, CMC, to explore initial cluster