ترغب بنشر مسار تعليمي؟ اضغط هنا

197 - S. Iblisdir 2013
Markov chains for probability distributions related to matrix product states and 1D Hamiltonians are introduced. With appropriate inverse temperature schedules, these chains can be combined into a random approximation scheme for ground states of such Hamiltonians. Numerical experiments suggest that a linear, i.e. fast, schedule is possible in non-trivial cases. A natural extension of these chains to 2D settings is next presented and tested. The obtained results compare well with Euclidean evolution. The proposed Markov chains are easy to implement and are inherently sign problem free (even for fermionic degrees of freedom).
A study of the thermal properties of two-dimensional topological lattice models is presented. This work is relevant to assess the usefulness of these systems as a quantum memory. For our purposes, we use the topological mutual information $I_{mathrm{ topo}}$ as a topological order parameter. For Abelian models, we show how $I_{mathrm{topo}}$ depends on the thermal topological charge probability distribution. More generally, we present a conjecture that $I_{mathrm{topo}}$ can (asymptotically) be written as a Kullback-Leitner distance between this probability distribution and that induced by the quantum dimensions of the model at hand. We also explain why $I_{mathrm{topo}}$ is more suitable for our purposes than the more familiar entanglement entropy $S_{mathrm{topo}}$. A scaling law, encoding the interplay of volume and temperature effects, as well as different limit procedures, are derived in detail. A non-Abelian model is next analysed and similar results are found. Finally, we also consider, in the case of a one-plaquette toric code, an environment model giving rise to a simulation of thermal effects in time.
Understanding the behaviour of topologically ordered lattice systems at finite temperature is a way of assessing their potential as fault-tolerant quantum memories. We compute the natural extension of the topological entanglement entropy for T > 0, n amely the subleading correction $I_{textrm{topo}}$ to the area law for mutual information. Its dependence on T can be written, for Abelian Kitaev models, in terms of information-theoretic functions and readily identifiable scaling behaviour, from which the interplay between volume, temperature, and topological order, can be read. These arguments are extended to non-Abelian quantum double models, and numerical results are given for the $D(S_3)$ model, showing qualitative agreement with the Abelian case.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا