ﻻ يوجد ملخص باللغة العربية
Understanding the behaviour of topologically ordered lattice systems at finite temperature is a way of assessing their potential as fault-tolerant quantum memories. We compute the natural extension of the topological entanglement entropy for T > 0, namely the subleading correction $I_{textrm{topo}}$ to the area law for mutual information. Its dependence on T can be written, for Abelian Kitaev models, in terms of information-theoretic functions and readily identifiable scaling behaviour, from which the interplay between volume, temperature, and topological order, can be read. These arguments are extended to non-Abelian quantum double models, and numerical results are given for the $D(S_3)$ model, showing qualitative agreement with the Abelian case.
Integrable models such as the spin-1/2 Heisenberg chain, the Lieb-Liniger or the one-dimensional Hubbard model are known to avoid thermalization, which was also demonstrated in several quantum-quench experiments. Another dramatic consequence of integ
Entanglement entropy in free scalar field theory at its ground state is dominated by an area law term. However, when mixed states are considered this property ceases to exist. We show that in such cases the mutual information obeys an area law. The p
We present an approach to identify topological order based on unbiased infinite projected entangled-pair states (iPEPS) simulations, i.e. where we do not impose a virtual symmetry on the tensors during the optimization of the tensor network ansatz. A
We calculate exactly the von Neumann and topological entropies of the toric code as a function of system size and temperature. We do so for systems with infinite energy scale separation between magnetic and electric excitations, so that the magnetic
A quantum tricritical point is shown to exists in coupled time-reversal symmetry (TRS) broken Majorana chains. The tricriticality separates topologically ordered, symmetry protected topological (SPT), and trivial phases of the system. Here we demonst