ترغب بنشر مسار تعليمي؟ اضغط هنا

In this work we revise the theory of one electron in a ferromagnetically saturated local moment system interacting via a Kondo-like exchange interaction. The complete eigenstates for the finite lattice are derived. It is then shown, that parts of the se states lose their norm in the limit of an infinite lattice. The correct (scattering) eigenstates are calculated in this limit. The time-dependent Schrodinger equation is solved for arbitrary initial conditions and the connection to the down-electron Greens function and the scattering states is worked out. A detailed analysis of the down-electron decay dynamics is given.
330 - S. Henning , W. Nolting 2009
The magnetic ground state phase diagram of the ferromagnetic Kondo-lattice model is constructed by calculating internal energies of all possible bipartite magnetic configurations of the simple cubic lattice explicitly. This is done in one dimension ( 1D), 2D and 3D for a local moment of S = 3/2. By assuming saturation in the local moment system we are able to treat all appearing higher local correlation functions within an equation of motion approach exactly. A simple explanation for the obtained phase diagram in terms of bandwidth reduction is given. Regions of phase separation are determined from the internal energy curves by an explicit Maxwell construction.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا