ترغب بنشر مسار تعليمي؟ اضغط هنا

Heterointerfaces in complex oxide systems open new arenas in which to test models of strongly correlated material, explore the role of dimensionality in metal-insulator-transitions (MITs) and small polaron formation. Close to the quantum critical poi nt Mott MITs depend on band filling controlled by random disordered substitutional doping. Delta-doped Mott insulators are potentially free of random disorder and introduce a new arena in which to explore the effect of electron correlations and dimensionality. Epitaxial films of the prototypical Mott insulator GdTiO3 are delta-doped by substituting a single (GdO)+1 plane with a monolayer of charge neutral SrO to produce a two-dimensional system with high planar doping density. Unlike metallic SrTiO3 quantum wells in GdTiO3 the single SrO delta-doped layer exhibits thermally activated DC and optical conductivity that agree in a quantitative manner with predictions of small polaron transport but with an extremely high two-dimensional density of polarons, ~ 7E14 cm-2
We report on tunneling measurements that reveal for the first time the evolution of the quasi-particle state density across the bandwidth controlled Mott metal to insulator transition in the rare earth perovskite nickelates. In this, a canonical clas s of transition metal oxides, we study in particular two materials close to the T=0 metal-insulator transition: NdNiO3 , an antiferromagnetic insulator, and LaNiO3, a correlated metal. We measure a sharp gap in NdNiO3, which has an insulating ground state, of ~ 30 meV. Remarkably, metallic LaNiO3 exhibits a pseudogap of the same order that presages the metal insulator transition. The smallness of both the gap and pseudogap suggests they arise from a common origin: proximity to a quantum critical point at or near the T=0 metal-insulator transition. It also supports theoretical models of the quantum phase transition in terms of spin and charge instabilities of an itinerant Fermi surface.
The Shubnikov-de Haas effect is used to explore the conduction band edge of high mobility SrTiO3 films doped with La. The results largely confirm the earlier measurements by Uwe et al. [Jap. J. Appl. Phys. 24, Suppl. 24-2, 335 (1985)]. The band edge dispersion differs significantly from the predictions of ab initio electronic structure theory.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا