ترغب بنشر مسار تعليمي؟ اضغط هنا

For the first time, we use the Gamma-ray Burst Monitor (GBM) on-board the Fermi satellite to search for sterile neutrino decay lines in the energy range 10-25 keV corresponding to sterile neutrino mass range 20-50 keV. This energy range has been out of reach of traditional X-ray satellites such as Chandra, Suzaku, XMM-Newton, and gamma-ray satellites such as INTEGRAL. Furthermore, the extremely wide field of view of the GBM opens a large fraction of the Milky Way dark matter halo to be probed. We start with 1601 days worth of GBM data, implement stringent data cuts, and perform two simple line search analyses on the reduced data: in the first, the line flux is limited without background modeling, and in the second, the background is modeled as a power-law. We find no significant excess lines in both our searches. We set new limits on sterile neutrino mixing angles, improving on previous limits by approximately an order of magnitude. Better understanding of detector and astrophysical backgrounds, as well as detector response, can further improve the limit.
Mapping supernovae to their progenitors is fundamental to understanding the collapse of massive stars. We investigate the red supergiant problem, which concerns why red supergiants with masses $sim16$-$30 M_odot$ have not been identified as progenito rs of Type IIP supernovae, and the supernova rate problem, which concerns why the observed cosmic supernova rate is smaller than the observed cosmic star formation rate. We find key physics to solving these in the compactness parameter, which characterizes the density structure of the progenitor. If massive stars with compactness above $xi_{2.5} sim 0.2$ fail to produce canonical supernovae, (i) stars in the mass range $16$-$30 M_odot$ populate an island of stars that have high $xi_{2.5}$ and do not produce canonical supernovae, and (ii) the fraction of such stars is consistent with the missing fraction of supernovae relative to star formation. We support this scenario with a series of two- and three-dimensional radiation hydrodynamics core-collapse simulations. Using more than 300 progenitors covering initial masses $10.8$-$75 M_odot$ and three initial metallicities, we show that high compactness is conducive to failed explosions. We then argue that a critical compactness of $sim 0.2$ as the divide between successful and failed explosions is consistent with state-of-the-art three-dimensional core-collapse simulations. Our study implies that numerical simulations of core collapse need not produce robust explosions in a significant fraction of compact massive star initial conditions.
We show that the canonical oscillation-based (non-resonant) production of sterile neutrino dark matter is inconsistent at $>99$% confidence with observations of galaxies in the Local Group. We set lower limits on the non-resonant sterile neutrino mas s of $2.5$ keV (equivalent to $0.7$ keV thermal mass) using phase-space densities derived for dwarf satellite galaxies of the Milky Way, as well as limits of $8.8$ keV (equivalent to $1.8$ keV thermal mass) based on subhalo counts of $N$-body simulations of M 31 analogues. Combined with improved upper mass limits derived from significantly deeper X-ray data of M 31 with full consideration for background variations, we show that there remains little room for non-resonant production if sterile neutrinos are to explain $100$% of the dark matter abundance. Resonant and non-oscillation sterile neutrino production remain viable mechanisms for generating sufficient dark matter sterile neutrinos.
226 - Shunsaku Horiuchi 2009
The Diffuse Supernova Neutrino Background (DSNB) provides an immediate opportunity to study the emission of MeV thermal neutrinos from core-collapse supernovae. The DSNB is a powerful probe of stellar and neutrino physics, provided that the core-coll apse rate is large enough and that its uncertainty is small enough. To assess the important physics enabled by the DSNB, we start with the cosmic star formation history of Hopkins & Beacom (2006) and confirm its normalization and evolution by cross-checks with the supernova rate, extragalactic background light, and stellar mass density. We find a sufficient core-collapse rate with small uncertainties that translate into a variation of +/- 40% in the DSNB event spectrum. Considering thermal neutrino spectra with effective temperatures between 4-6 MeV, the predicted DSNB is within a factor 4-2 below the upper limit obtained by Super-Kamiokande in 2003. Furthermore, detection prospects would be dramatically improved with a gadolinium-enhanced Super-Kamiokande: the backgrounds would be significantly reduced, the fluxes and uncertainties converge at the lower threshold energy, and the predicted event rate is 1.2-5.6 events /yr in the energy range 10-26 MeV. These results demonstrate the imminent detection of the DSNB by Super-Kamiokande and its exciting prospects for studying stellar and neutrino physics.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا