ترغب بنشر مسار تعليمي؟ اضغط هنا

Graphene has attracted increasing interests due to its remarkable properties, however, the zero band gap of monolayer graphene might limit its further electronic and optoelectronic applications. Herein, we have successfully synthesized monolayer sili con-doped graphene (SiG) in large area by chemical vapor deposition method. Raman spectroscopy and X-ray photoelectron spectroscopy measurements evidence silicon atoms are doped into graphene lattice with the doping level of 3.4 at%. The electrical measurement based on field effect transistor indicates that the band gap of graphene has been opened by silicon doping, which is around 0. 28 eV supported by the first-principle calculations, and the ultraviolet photoelectron spectroscopy demonstrates the work function of SiG is 0.13 eV larger than that of graphene. Moreover, the SiG/GaAs heterostructure solar cells show an improved power conversion efficiency of 33.7% in average than that of graphene/GaAs solar cells, which are attributed to the increased barrier height and improved interface quality. Our results suggest silicon doping can effectively engineer the band gap of monolayer graphene and SiG has great potential in optoelectronic device applications.
We report a type of solar cells based on graphene/CdTe Schottky heterostructure, which can be improved by surface engineering as graphene is one-atomic thin. By coating a layer of ultrathin CdSe quantum dots onto graphene/CdTe heterostructure, the po wer conversion efficiency is increased from 2.08% to 3.1%. Photo-induced doping is mainly accounted for this enhancement, as evidenced by transport, photoluminescence and quantum efficiency measurements. This work demonstrates a feasible way of designing solar cells with incorporating one dimensional and two dimensional materials.
The honeycomb connection of carbon atoms by covalent bonds in a macroscopic two-dimensional scale leads to fascinating graphene and solar cell based on graphene/silicon Schottky diode has been widely studied. For solar cell applications, GaAs is supe rior to silicon as it has a direct band gap of 1.42 eV and its electron mobility is six times of that of silicon. However, graphene/GaAs solar cell has been rarely explored. Herein, we report graphene/GaAs solar cells with conversion efficiency (Eta) of 10.4% and 15.5% without and with anti-reflection layer on graphene, respectively. The Eta of 15.5% is higher than the state of art efficiency for graphene/Si system (14.5%). Furthermore, our calculation points out Eta of 25.8% can be reached by reasonably optimizing the open circuit voltage, junction ideality factor, resistance of graphene and metal/graphene contact. This research strongly support graphene/GaAs hetero-structure solar cell have great potential for practical applications.
315 - S. S. Lin , B. G. Chen , W.Xiong 2012
For the first time, we have observed the obvious triple G peak splitting of ABA stacked trilayer graphene. The G peak splitting can be quantatively understood through the different electron-phonon coupling strength of Ea, Eb and Ea modes. In addition , the fluctuation of G peak position at different sample locations can also be understood from the view of the varied interaction strength among graphene layers of TLG, which is induced by nonuniform hole doping at the microscopic level.
173 - Xiao Lin , Yang Xu , Shisheng Lin 2012
Optical and electronic properties of two dimensional few layers graphitic silicon carbide (GSiC), in particular monolayer and bilayer, are investigated by density functional theory and found different from that of graphene and silicene. Monolayer GSi C has direct bandgap while few layers exhibit indirect bandgap. The bandgap of monolayer GSiC can be tuned by an in-plane strain. Properties of bilayer GSiC are extremely sensitive to the interlayer distance. These predictions promise that monolayer GSiC could be a remarkable candidate for novel type of light-emitting diodes utilizing its unique optical properties distinct from graphene, silicene and few layers GSiC.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا