ترغب بنشر مسار تعليمي؟ اضغط هنا

114 - T. Ohashi 2015
DIOS (Diffuse Intergalactic Oxygen Surveyor) is a small satellite aiming for a launch around 2020 with JAXAs Epsilon rocket. Its main aim is a search for warm-hot intergalactic medium with high-resolution X-ray spectroscopy of redshifted emission lin es from OVII and OVIII ions. The superior energy resolution of TES microcalorimeters combined with a very wide field of view (30--50 arcmin diameter) will enable us to look into gas dynamics of cosmic plasmas in a wide range of spatial scales from Earths magnetosphere to unvirialized regions of clusters of galaxies. Mechanical and thermal design of the spacecraft and development of the TES calorimeter system are described. We also consider revising the payload design to optimize the scientific capability allowed by the boundary conditions of the small mission.
74 - P. Coppi 2014
The broad energy range spanned by ASTRO-H instruments, from ~0.3 to 600 keV, with its high spectral resolution calorimeter and sensitive hard X-ray imaging, offers unique opportunities to study black holes and their environments. The ability to measu re polarization is particularly novel, with potential sources including blazars, Galactic pulsars and X-ray binaries. In this White Paper, we present an overview of the synergistic instrumental capabilities and the improvements over prior missions. We also show how ASTRO-H fits into the multi-wavelength landscape. We present in more detail examples and simulations of key science ASTRO-H can achieve in a typical 100 ksec observation when data from all four instruments are combined. Specifically, we consider observations of black-hole source (Cyg X-1 and GRS 1915+105), blazars (Mrk 421 and Mrk 501), a quasar (3C 273), radio galaxies (Centaurus A and 3C 120), and active galaxies with a strong starburst (Circinus and NGC 4945). We will also address possible new discoveries expected from ASTRO-H.
47 - M. S. Tashiro 2014
In this paper, we demonstrate ASTRO-Hs capability to measure the chemical evolution in the high-z (z <~ 3) universe by observing X-ray afterglows of gamma-ray bursts (GRBs) and distant Blazars. Utilizing these sources as background light sources, the excellent energy resolution of ASTRO-H/SXS allows us to detect emission and absorption features from heavy elements in the circumstellar material in the host galaxies, from the intergalactic medium (IGM) and in the ejecta of GRB explosions. In particular, we can constrain the existence of the warm-hot intergalactic material (WHIM), thought to contain most of the baryons at redshift of z < ~3, with a typical exposure of one day for a follow-up observation of a GRB afterglow or 300 ks exposure for several distant Blazars. In addition to the chemical evolution study, the combination of the SGD, HXI, SXI and SXS will measure, for the first time, the temporal behavior of the spectral continuum of GRB afterglows and Blazars over a broad energy range and short time scales allowing detailed modeling of jets. The ability to obtain these data from GRB afterglows will depend critically on the availability of GRB triggers and the capability of ASTRO-H to respond rapidly to targets of opportunity. At the present time it seems as if Swift will still be functioning normally during the first two years of ASTRO-H operations providing the needed triggering capability.
90 - F. Aharonian 2014
We discuss the prospects for a progress to be brought by ASTRO-H in the understanding of the physics of particle acceleration in astrophysical environments. Particular emphasis will be put on the synergy with gamma-ray astronomy, in the context of th e rapid developments of recent years. Selected topics include: shock acceleration in supernova remnants (SNRs) and in clusters of galaxies, and the extreme particle acceleration seen in gamma-ray binaries. Since the hydrodynamics and thermal properties of shocks in these objects are covered in other white papers, we focus on the aspects related to the process of particle acceleration. In the case of SNRs, we emphasize the importance of SXS and HXI observations of the X-ray emission of young SNRs dominated by synchrotron radiation, particularly SNR RX J1713.7-3946. We argue that the HXI observations of young SNRs, as a byproduct of SXS observations dedicated for studies of the shock dynamics and nucleosynthesis, will provide powerful constraints on shock acceleration theories. Also, we discuss gamma-ray binary systems, where extreme particle acceleration is inferred regardless of the nature (a neutron star or a black hole) of the compact object. Finally, for galaxy clusters, we propose searches for hard X-ray emission of secondary electrons from interactions of ultra-high energy cosmic rays accelerated at accretion shocks. This should allow us to understand the contribution of galaxy clusters to the flux of cosmic rays above 10^18 eV.
69 - J. M. Miller 2014
Thanks to extensive observations with X-ray missions and facilities working in other wavelengths, as well as rapidly--advancing numerical simulations of accretion flows, our knowledge of astrophysical black holes has been remarkably enriched. Rapid p rogress has opened new areas of enquiry, including measurements of black hole spin, the properties and driving mechanisms of jets and disk winds, the impact of feedback into local environments, the origin of periodic and aperiodic X-ray variations, and the nature of super-Eddington accretion flows, among others. The goal of this White Paper is to illustrate how ASTRO-H can make dramatic progress in the study of astrophysical black holes, particularly the study of black hole X-ray binaries.
132 - S. Yamada , H. Negoro , S. Torii 2013
Rapid spectral changes in the hard X-ray on a time scale down to ~0.1 s are studied by applying shot analysis technique to the Suzaku observations of the black hole binary Cygnus X-1, performed on 2008 April 18 during the low/hard state. We successfu lly obtained the shot profiles covering 10--200 keV with the Suzaku HXD-PIN and HXD-GSO detector. It is notable that the 100-200 keV shot profile is acquired for the first time owing to the HXD-GSO detector. The intensity changes in a time-symmetric way, though the hardness does in a time-asymmetric way. When the shot-phase-resolved spectra are quantified with the Compton model, the Compton y-parameter and the electron temperature are found to decrease gradually through the rising phase of the shot, while the optical depth appears to increase. All the parameters return to their time-averaged values immediately within 0.1 s past the shot peak. We have not only confirmed this feature previously found in energies below ~60 keV, but also found that the spectral change is more prominent in energies above ~100 keV, implying the existence of some instant mechanism for direct entropy production. We discuss possible interpretations on the rapid spectral changes in the hard X-ray band.
We present observations of a transient He-like Fe K alpha absorption line in Suzaku observations of the black hole binary Cygnus X-1 on 2011 October 5 near superior conjunction during the high/soft state, which enable us to map the full evolution fro m the start and the end of the episodic accretion phenomena or dips for the first time. We model the X-ray spectra during the event and trace their evolution. The absorption line is rather weak in the first half of the observation, but instantly deepens for ~10 ks, and weakens thereafter. The overall change in equivalent width is a factor of ~3, peaking at an orbital phase of ~0.08. This is evidence that the companion stellar wind feeding the black hole is clumpy. By analyzing the line with a Voigt profile, it is found to be consistent with a slightly redshifted Fe XXV transition, or possibly a mixture of several species less ionized than Fe XXV. The data may be explained by a clump located at a distance of ~10^(10-12) cm with a density of ~10^((-13)-(-11)) g cm^-3, which accretes onto and/or transits the line-of-sight to the black hole, causing an instant decrease in the observed degree of the ionization and/or an increase in density of the accreting matter. Continued monitoring for individual events with future X-ray calorimeter missions such as ASTRO-H and AXSIO will allow us to map out the accretion environment in detail and how it changes between the various accretion states.
Unified X-ray spectral and timing studies of Cygnus X-1 in the low/hard and hard intermediate state were conducted in a model-independent manner, using broadband Suzaku data acquired on 25 occasions from 2005 to 2009 with a total exposure of ~ 450 ks . The unabsorbed 0.1--500 keV source luminosity changed over 0.8--2.8% of the Eddington limit for 14.8 solar masses. Variations on short (1--2 seconds) and long (days to months) time scales require at least three separate components: a constant component localized below ~2 keV, a broad soft one dominating in the 2--10 keV range, and a hard one mostly seen in 10--300 keV range. In view of the truncated disk/hot inner flow picture, these are respectively interpreted as emission from the truncated cool disk, a soft Compton component, and a hard Compton component. Long-term spectral evolution can be produced by the constant disk increasing in temperature and luminosity as the truncation radius decreases. The soft Compton component likewise increases, but the hard Compton does not, so that the spectrum in the hard intermediate state is dominated by the soft Compton component; on the other hand, the hard Compton component dominates the spectrum in the dim low/hard state, probably associated with a variable soft emission providing seed photons for the Comptonization.
We present the result of a systematic study of pileup phenomena seen in the X-ray Imaging Spectrometer, an X-ray CCD instrument, onboard the Suzaku observatory. Using a data set of observed sources in a wide range of brightness and spectral hardness, we characterized the pileup fraction, spectral hardening, and grade migration as a function of observed count rate in a frame per pixel. Using the pileup fraction as a measure of the degree of pileup, we found that the relative spectral hardening (the hardness ratio normalized to the intrinsic spectral hardness), branching ratio of split events, and that of detached events increase monotonically as the pileup fraction increases, despite the variety of brightness and hardness of the sample sources. We derived the pileup fraction as a function of radius used for event extraction. Upon practical considerations, we found that events outside of the radius with a pileup fraction of 1% or 3% are useful for spectral analysis. We present relevant figures, tables, and software for the convenience of users who wish to apply our method for their data reduction of piled-up sources.
Improvements of in-orbit calibration of GSO scintillators in the Hard X-ray Detector on board Suzaku are reported. To resolve an apparent change of the energy scale of GSO which appeared across the launch for unknown reasons, consistent and thorough re-analyses of both pre-launch and in-orbit data have been performed. With laboratory experiments using spare hardware, the pulse height offset, corresponding to zero energy input, was found to change by ~0.5 of the full analog voltage scale, depending on the power supply. Furthermore, by carefully calculating all the light outputs of secondaries from activation lines used in the in-orbit gain determination, their energy deposits in GSO were found to be effectively lower, by several percent, than their nominal energies. Taking both these effects into account, the in-orbit data agrees with the on-ground measurements within ~5%, without employing the artificial correction introduced in the previous work (Kokubun et al. 2007). With this knowledge, we updated the data processing, the response, and the auxiliary files of GSO, and reproduced the HXD-PIN and HXD-GSO spectra of the Crab Nebula over 12-300 keV by a broken powerlaw with a break energy of ~110 keV.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا