ﻻ يوجد ملخص باللغة العربية
We present the result of a systematic study of pileup phenomena seen in the X-ray Imaging Spectrometer, an X-ray CCD instrument, onboard the Suzaku observatory. Using a data set of observed sources in a wide range of brightness and spectral hardness, we characterized the pileup fraction, spectral hardening, and grade migration as a function of observed count rate in a frame per pixel. Using the pileup fraction as a measure of the degree of pileup, we found that the relative spectral hardening (the hardness ratio normalized to the intrinsic spectral hardness), branching ratio of split events, and that of detached events increase monotonically as the pileup fraction increases, despite the variety of brightness and hardness of the sample sources. We derived the pileup fraction as a function of radius used for event extraction. Upon practical considerations, we found that events outside of the radius with a pileup fraction of 1% or 3% are useful for spectral analysis. We present relevant figures, tables, and software for the convenience of users who wish to apply our method for their data reduction of piled-up sources.
We report X-ray spectroscopic results for four giant solar flares occurred on 2005 September 7 (X17.0), 2005 September 8 (X5.4), 2005 September 9 (X6.2), and 2006 December 5 (X9.0), obtained from Earth albedo data with the X-ray imaging spectrometer
A charge injection technique is applied to the X-ray CCD camera, XIS (X-ray Imaging Spectrometer) onboard Suzaku. The charge transfer inefficiency (CTI) in each CCD column (vertical transfer channel) is measured by the injection of charge packets int
Improvements of in-orbit calibration of GSO scintillators in the Hard X-ray Detector on board Suzaku are reported. To resolve an apparent change of the energy scale of GSO which appeared across the launch for unknown reasons, consistent and thorough
Atmospheric conditions, such as the pressure (P), temperature (T) or air density ($rho propto P/T$), affect the development of extended air showers initiated by energetic cosmic rays. We study the impact of the atmospheric variations on the reconstru
Methods.There are no experimental data about the background experienced by microcalorimeters in the L2 orbit, and thus the particle background levels were calculated by means of Monte Carlo simulations: we considered the original design configuration