ترغب بنشر مسار تعليمي؟ اضغط هنا

79 - H. Yan , K. Liao , Z. Deng 2014
Lights wave-particle duality is at the heart of quantum mechanics and can be well illustrated by Wheelers delayed-choice experiment. The choice of inserting or removing the second classical (quantum) beam splitter in a Mach-Zehnder interferometer det ermines the classical (quantum) wave-particle behaviors of a photon. In this paper, we report our experiment using the classical beam splitter to observe the simultaneous wave-particle behaviors in the wave-packet of a narrowband single photon. This observation suggests that it is necessary to generalize the current quantum wave-particle duality theory. Our experiment demonstrates that the produced wave-particle state can be considered an additional degree of freedom and can be utilized in encoding quantum information.
103 - Kaiyu Liao , Hui Yan , Junyu He 2014
We demonstrate an efficient experimental scheme for producing polarization-entangled photon pairs from spontaneous four-wave mixing (SFWM) in a laser-cooled $^{85}$Rb atomic ensemble, with a bandwidth (as low as 0.8 MHz) much narrower than the rubidi um atomic natural linewidth. By stabilizing the relative phase between the two SFWM paths in a Mach-Zehnder interferometer configuration, we are able to produce all four Bell states. These subnatural-linewidth photon pairs with polarization entanglement are ideal quantum information carriers for connecting remote atomic quantum nodes via efficient light-matter interaction in a photon-atom quantum network.
Geometric quantum manipulation and Landau-Zener interferometry have been separately explored in many quantum systems. In this Letter, we combine these two approaches to study the dynamics of a superconducting phase qubit. We experimentally demonstrat e Landau-Zener interferometry based on the pure geometric phases in this solid-state qubit. We observe the interference caused by a pure geometric phase accumulated in the evolution between two consecutive Landau-Zener transitions, while the dynamical phase is canceled out by a spin-echo pulse. The full controllability of the qubit state as a function of the intrinsically robust geometric phase provides a promising approach for quantum state manipulation.
We study theoretically the localization of relativistic particles in disordered one-dimensional chains. It is found that the relativistic particles tend to dislocation in comparison with the non-relativistic particles with the same disorder strength. More intriguingly, we reveal that the massless Dirac particles are entirely delocalized for any energy due to the inherent chiral symmetry, leading to a well-known result that particles are always localized in one-dimensional system for arbitrary weak disorders to break down. Furthermore, we propose a feasible scheme to simulate and detect the delocalization feature of the Dirac particles with cold atoms..
We design an ingenious scheme to realize the Haldanes quantum Hall model without Landau level by using ultracold atoms trapped in an optical lattice. Three standing-wave laser beams are used to construct a wanted honeycomb lattice, where different on -site energies in two sublattices required in the Haldanes model can be implemented through tuning the phase of one of the laser beams. The staggered magnetic field is generated from the Berry phase associated with the atom moving in a region with other three standing-wave laser beams. Moreover, we establish a relation between the Hall conductivity and the equilibrium atomic density upon turning on a stimulated uniform magnetic field, which enables us to detect the topological Chern number with the density profile measurement technique that is typically used in ultracold atoms experiments.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا