ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental Observation of Simultaneous Wave and Particle Behaviors in a Narrowband Single Photons Wave Packe

80   0   0.0 ( 0 )
 نشر من قبل Shi-Liang Zhu
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Lights wave-particle duality is at the heart of quantum mechanics and can be well illustrated by Wheelers delayed-choice experiment. The choice of inserting or removing the second classical (quantum) beam splitter in a Mach-Zehnder interferometer determines the classical (quantum) wave-particle behaviors of a photon. In this paper, we report our experiment using the classical beam splitter to observe the simultaneous wave-particle behaviors in the wave-packet of a narrowband single photon. This observation suggests that it is necessary to generalize the current quantum wave-particle duality theory. Our experiment demonstrates that the produced wave-particle state can be considered an additional degree of freedom and can be utilized in encoding quantum information.

قيم البحث

اقرأ أيضاً

The ultimate goal and the theoretical limit of weak signal detection is the ability to detect a single photon against a noisy background. [...] In this paper we show, that a combination of a quantum metamaterial (QMM)-based sensor matrix and quantum non-demolition (QND) readout of its quantum state allows, in principle, to detect a single photon in several points, i.e., to observe its wave front. Actually, there are a few possible ways of doing this, with at least one within the reach of current experimental techniques for the microwave range. The ability to resolve the quantum-limited signal from a remote source against a much stronger local noise would bring significant advantages to such diverse fields of activity as, e.g., microwave astronomy and missile defence. The key components of the proposed method are 1) the entangling interaction of the incoming photon with the QMM sensor array, which produces the spatially correlated quantum state of the latter, and 2) the QND readout of the collective observable (e.g., total magnetic moment), which characterizes this quantum state. The effects of local noise (e.g., fluctuations affecting the elements of the matrix) will be suppressed relative to the signal from the spatially coherent field of (even) a single photon.
In a microscopic quantum system one cannot perform a simultaneous measurement of particle and wave properties. This, however, may not be true for macroscopic quantum systems. As a demonstration, we propose to measure the local macroscopic current pas sed through two slits in a superconductor. According to the theory based on the linearized Ginzburg-Landau equation for the macroscopic pseudo wave function, the streamlines of the measured current should have the same form as particle trajectories in the Bohmian interpretation of quantum mechanics. By an explicit computation we find that the streamlines should show a characteristic wiggling, which is a consequence of quantum interference.
85 - Wei Li , Shengmei Zhao 2019
The simplest single-photon entanglement is the entanglement of the vacuum state and the single-photon state between two path modes. The verification of the existence of single-photon entanglement has attracted extensive research interests. Here, base d on the construction of Bells inequality in wave space, we propose a new method to verify single photon entanglement. Meanwhile, we define the wave state in two-dimensional space relative to the photon number state, and propose a method to measure it. Strong violation of Bell inequality based on joint measurement of wave states indicates the existence of single photon entanglement with certainty. Wave state entanglement obtained from Fourier transform of single photon entanglement and the corresponding measurement protocols will provide us with more information-carrying schemes in the field of quantum information. The difference in the representation in photon-number space and wave space implies the wave-particle duality of single photon entanglement.
We report on the generation, subsequent oscillation and interaction of a pair of matter wave dark solitons. These are created by releasing a Bose-Einstein condensate from a double well potential into a harmonic trap in the crossover regime between on e dimension (1D) and three dimensions (3D). The oscillation of the solitons is observed and the frequency is in quantitative agreement with simulations using the Gross-Pitaevskii equation. An effective particle picture is developed and reveals that the deviation of the observed frequencies from the asymptotic prediction $ u_{z}/sqrt{2}$, where $ u_{z}$ is the longitudinal trapping frequency, results from the dimensionality of the system and the interaction between the solitons.
A textbook interpretation of quantum physics is that quantum objects can be described in a particle or a wave picture, depending on the operations and measurements performed. Beyond this widely held believe, we demonstrate in this contribution that n either the wave nor the particle description is sufficient to predict the outcomes of quantum-optical experiments. To show this, we derive correlation-based criteria that have to be satisfied when either particles or waves are fed into our interferometer. Using squeezed light, it is then confirmed that measured correlations are incompatible with either picture. Thus, within one single experiment, it is proven that neither a wave nor a particle model explains the observed phenomena. Moreover, we formulate a relation of wave and particle representations to two incompatible notions of quantum coherence, a recently discovered resource for quantum information processing.For such an information-theoretic interpretation of our method, we certify the nonclassicality of coherent states - the quantum counterpart to classical waves - in the particle picture, complementing the known fact that photon states are nonclassical in the typically applied wave picture.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا