ﻻ يوجد ملخص باللغة العربية
Lights wave-particle duality is at the heart of quantum mechanics and can be well illustrated by Wheelers delayed-choice experiment. The choice of inserting or removing the second classical (quantum) beam splitter in a Mach-Zehnder interferometer determines the classical (quantum) wave-particle behaviors of a photon. In this paper, we report our experiment using the classical beam splitter to observe the simultaneous wave-particle behaviors in the wave-packet of a narrowband single photon. This observation suggests that it is necessary to generalize the current quantum wave-particle duality theory. Our experiment demonstrates that the produced wave-particle state can be considered an additional degree of freedom and can be utilized in encoding quantum information.
The ultimate goal and the theoretical limit of weak signal detection is the ability to detect a single photon against a noisy background. [...] In this paper we show, that a combination of a quantum metamaterial (QMM)-based sensor matrix and quantum
In a microscopic quantum system one cannot perform a simultaneous measurement of particle and wave properties. This, however, may not be true for macroscopic quantum systems. As a demonstration, we propose to measure the local macroscopic current pas
The simplest single-photon entanglement is the entanglement of the vacuum state and the single-photon state between two path modes. The verification of the existence of single-photon entanglement has attracted extensive research interests. Here, base
We report on the generation, subsequent oscillation and interaction of a pair of matter wave dark solitons. These are created by releasing a Bose-Einstein condensate from a double well potential into a harmonic trap in the crossover regime between on
A textbook interpretation of quantum physics is that quantum objects can be described in a particle or a wave picture, depending on the operations and measurements performed. Beyond this widely held believe, we demonstrate in this contribution that n