ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper, the photon stationary transport equation has been extended from $mathbb{R}^3$ to $mathbb{C}^3$. A solution of the inverse problem is obtained on a hyper-sphere and a hyper-cylinder as X-ray and Radon transform, respectively. We show th at these results can be transformed into each other and they agree with known results.
In this paper, we develop a quantitative comparison method for two arbitrary protein structures. This method uses a root-mean-square deviation (RMSD) characterization and employs a series expansion of the proteins shape function in terms of the Wigne r-D functions to define a new criterion, which is called a similarity value. We further demonstrate that the expansion coefficients for the shape function obtained with the help of the Wigner-D functions correspond to structure factors. Our method addresses the common problem of comparing two proteins with different numbers of atoms. We illustrate it with a worked example.
In this paper, we use the time super-operator formalism in the 2-level Friedrichs model cite{fried} to obtain a phenomenological model of mesons decay. Our approach provides a fairly good estimation of the CP symmetry violation parameter in the case of K, B and D mesons. We also propose a crucial test aimed at discriminating between the standard approach and the time super-operator approach developed throughout the paper.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا