ترغب بنشر مسار تعليمي؟ اضغط هنا

Simple practical approach to estimate thermodynamic properties of strongly coupled Yukawa systems, in both fluid and solid phases, is presented. The accuracy of the approach is tested by extensive comparison with direct computer simulation results (f or fluids and solids) and the recently proposed shortest-graph method (for solids). Possible applications to other systems of softly repulsive particles are briefly discussed.
Phase behavior of large three-dimensional complex plasma systems under microgravity conditions onboard the International Space Station is investigated. The neutral gas pressure is used as a control parameter to trigger phase changes. Detailed analysi s of structural properties and evaluation of three different melting/freezing indicators reveal that complex plasmas can exhibit melting by increasing the gas pressure. Theoretical estimates of complex plasma parameters allow us to identify main factors responsible for the observed behavior. The location of phase states of the investigated systems on a relevant equilibrium phase diagram is estimated. Important differences between the melting process of 3D complex plasmas under microgravity conditions and that of flat 2D complex plasma crystals in ground based experiments are discussed.
Freezing and melting of large three-dimensional complex plasmas under microgravity conditions is investigated. The neutral gas pressure is used as a control parameter to trigger the phase changes: Complex plasma freezes (melts) by decreasing (increas ing) the pressure. Evolution of complex plasma structural properties upon pressure variation is studied. Theoretical estimates allow us to identify main factors responsible for the observed behavior.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا