ترغب بنشر مسار تعليمي؟ اضغط هنا

Fluid-solid phase transitions in 3D complex plasmas under microgravity conditions

271   0   0.0 ( 0 )
 نشر من قبل Sergey Khrapak
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Phase behavior of large three-dimensional complex plasma systems under microgravity conditions onboard the International Space Station is investigated. The neutral gas pressure is used as a control parameter to trigger phase changes. Detailed analysis of structural properties and evaluation of three different melting/freezing indicators reveal that complex plasmas can exhibit melting by increasing the gas pressure. Theoretical estimates of complex plasma parameters allow us to identify main factors responsible for the observed behavior. The location of phase states of the investigated systems on a relevant equilibrium phase diagram is estimated. Important differences between the melting process of 3D complex plasmas under microgravity conditions and that of flat 2D complex plasma crystals in ground based experiments are discussed.



قيم البحث

اقرأ أيضاً

Freezing and melting of large three-dimensional complex plasmas under microgravity conditions is investigated. The neutral gas pressure is used as a control parameter to trigger the phase changes: Complex plasma freezes (melts) by decreasing (increas ing) the pressure. Evolution of complex plasma structural properties upon pressure variation is studied. Theoretical estimates allow us to identify main factors responsible for the observed behavior.
The impact-induced energy transfer and dissipation in granular targets without any confining walls are studied by microgravity experiments. A solid projectile impacts into a granular target at low impact speed ($0.045 leq v_p leq 1.6$~m~s$^{-1}$) in a laboratory drop tower. Granular clusters consisting of soft or hard particles are used as targets. Porous dust agglomerates and glass beads are used for soft and hard particles, respectively. The expansion of the granular target cluster is recorded by a high-speed camera. Using the experimental data, we find that (i)~a simple energy scaling can explain the energy transfer in both, soft- and hard-particles granular targets, (ii)~the kinetic impact energy is isotropically transferred to the target from the impact point, and (iii)~the transferred kinetic energy is $2$~-~$7$% of the projectiles initial kinetic energy. The dissipative-diffusion model of energy transfer can quantitatively explain these behaviors.
Oscillation of particles in a dust crystal formed in a low-pressure radio-frequency gas discharge under microgravity conditions is studied. Analysis of experimental data obtained in our previous study shows that the oscillations are highly isotropic and nearly homogeneous in the bulk of a dust crystal; oscillations of the neighboring particles are significantly correlated. We demonstrate that the standard deviation of the particle radius-vector along with the local particle number density fully define the coupling parameter of the particle subsystem. The latter proves to be of the order of 100, which is two orders of magnitude lower than the coupling parameter estimated for the Brownian diffusion of particles with the gas temperature. This means significant kinetic overheating of particles under stationary conditions. A theoretical interpretation of the large amplitude of oscillation implies the increase of particle charge fluctuations in the dust crystal. The theoretical estimates are based on the ionization equation of state for the complex plasma and the equation for the plasma perturbation evolution. They are shown to match the results of experimental data processing. Estimated order of magnitude of the coupling parameter accounts for the existence of the solid-liquid phase transition observed for similar systems in experiments.
51 - Zafir Zaman 2017
Remarkably persistent mixing and non-mixing regions (islands) are observed to coexist in a three-dimensional dynamical system where randomness is expected. The track of an x-ray opaque particle in a spherical shell half-filled with dry non-cohesive p articles and periodically rotated about two axes reveals interspersed structures that are spatially complex and vary non-trivially with the rotation angles. The geometric skeleton of the structures forms from the subtle interplay between fluid-like mixing by stretching-and-folding, and solids mixing by cutting-and-shuffling, which is described by the mathematics of piecewise isometries. In the physical system, larger islands predicted by the cutting-and-shuffling model alone can persist despite the presence of stretching-and-folding flows and particle-collision-driven diffusion, while predicted smaller islands are not observed. By uncovering the synergy of simultaneous fluid and solid mixing, we point the way to a more fundamental understanding of advection driven mixing in materials with both solid and flowing regions.
Heat transport in a three-dimensional complex (dusty) plasma was experimentally studied in microgravity conditions using Plasmakristall-4 (PK-4) instrument on board the International Space Station (ISS). An extended suspension of microparticles was l ocally heated by a shear flow created by applying the radiation pressure force of the manipulation-laser beam. Individual particle trajectories in the flow were analysed and from these, using a fluid heat transport equation that takes viscous heating and neutral gas drag into account, the complex plasmas thermal diffusivity and kinematic viscosity were calculated. Their values are compared with previous results reported in ground-based experiments with complex plasmas.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا