ترغب بنشر مسار تعليمي؟ اضغط هنا

We review some recent (mostly ours) results on the Anderson localization of light and electron waves in complex disordered systems, including: (i) left-handed metamaterials, (ii) magneto-active optical structures, (iii) graphene superlattices, and (i v) nonlinear dielectric media. First, we demonstrate that left-handed metamaterials can significantly suppress localization of light and lead to an anomalously enhanced transmission. This suppression is essential at the long-wavelength limit in the case of normal incidence, at specific angles of oblique incidence (Brewster anomaly), and in the vicinity of the zero-epsilon or zero-mu frequencies for dispersive metamaterials. Remarkably, in disordered samples comprised of alternating normal and left-handed metamaterials, the reciprocal Lyapunov exponent and reciprocal transmittance increment can differ from each other. Second, we study magneto-active multilayered structures, which exhibit nonreciprocal localization of light depending on the direction of propagation and on the polarization. At resonant frequencies or realizations, such nonreciprocity results in effectively unidirectional transport of light. Third, we discuss the analogy between the wave propagation through multilayered samples with metamaterials and the charge transport in graphene, which enables a simple physical explanation of unusual conductive properties of disordered graphene superlatices. We predict disorder-induced resonances of the transmission coefficient at oblique incidence of the Dirac quasiparticles. Finally, we demonstrate that an interplay of nonlinearity and disorder in dielectric media can lead to bistability of individual localized states excited inside the medium at resonant frequencies. This results in nonreciprocity of the wave transmission and unidirectional transport of light.
We summarize the results of our comprehensive analytical and numerical studies of the effects of polarization on the Anderson localization of classical waves in one-dimensional random stacks. We consider homogeneous stacks composed entirely of normal materials or metamaterials, and also mixed stacks composed of alternating layers of a normal material and metamaterial. We extend the theoretical study developed earlier for the case of normal incidence [A. A. Asatryan et al, Phys. Rev. B 81, 075124 (2010)] to the case of off-axis incidence. For the general case where both the refractive indices and layer thicknesses are random, we obtain the long-wave and short-wave asymptotics of the localization length over a wide range of incidence angles (including the Brewster ``anomaly angle). At the Brewster angle, we show that the long-wave localization length is proportional to the square of the wavelength, as for the case of normal incidence, but with a proportionality coefficient substantially larger than that for normal incidence. In mixed stacks with only refractive-index disorder, we demonstrate that p-polarized waves are strongly localized, while for s-polarization the localization is substantially suppressed, as in the case of normal incidence. In the case of only thickness disorder, we study also the transition from localization to delocalization at the Brewster angle.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا