ترغب بنشر مسار تعليمي؟ اضغط هنا

We measured the Raman spectra of ferromagnetic nearly half metal CoS2 in a broad temperature range. All five Raman active modes Ag, Eg, Tg(1), Tg(2) and Tg(3) were observed. The magnetic ordering is indicated by a change of the temperature dependence s of the frequency and the line width of Ag and T g(2) modes at the Curie point. The temperature dependence of the frequencies and linewidths of the Ag, Eg, Tg(1), T g(2) modes in the paramagnetic phase can be described in the framework of the Klemens approach. Hardening of the Tg(2), Tg(1) and A g modes on cooling can be unambiguously seen in the ferromagnetic phase. The linewidths of Tg(2) and Ag modes behave a natural way at low exciting laser power (decrease with decreasing temperature) in the ferromagnetic phase. At high exciting laser power the corresponding linewidths increase at temperature decreasing below the Curie temperature. Then as can be seen the line width of Ag mode reaches a maxima at about 80K. This intriging feature probably signifies a specific channel of the optical phonon decay in the ferromagnetic phase of CoS2. Tentative explanations of some of the observed effects are given, taking into account the nearly half metallic nature of CoS2.
The heat capacity of helical magnets Cu2OSeO3 and MnSi has been investigated at high pressures by the ac-calorimetric technique. Despite the differing nature of their magnetic moments, Cu2OSeO3 and MnSi demonstrate a surprising similarity in behavior of their magnetic and thermodynamic properties at the phase transition. Two characteristic features of the heat capacity at the phase transitions of both substances (peak and shoulder) behave also in a similar way at high pressures if analyzed as a function of temperature. This probably implies that the longitudinal spin fluctuations typical of weak itinerant magnets like MnSi contribute little to the phase transition. The shoulders of the heat capacity curves shrink with decreasing temperature suggesting that they arise from classical fluctuations. In case of MnSi the sharp peak and shoulder at the heat capacity disappear simultaneously probably signifying the existence of a tricritical point and confirming the fluctuation nature of the first order phase transition in MnSi as well as in Cu2OSeO3.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا