ترغب بنشر مسار تعليمي؟ اضغط هنا

We have performed spin- and angle-resolved photoemission spectroscopy of the topological insulator Pb(Bi,Sb)2Te4 (Pb124) and observed significant out-of-plane spin polarization on the hexagonally warped Dirac-cone surface state. To put this into cont ext, we carried out quantitative analysis of the warping strengths for various topological insulators (Pb124, Bi2Te3, Bi2Se3, and TlBiSe2) and elucidated that the out-of-plane spin polarization Pz is systematically correlated with the warping strength. However, the magnitude of Pz is found to be only half of that expected from the kp theory when the warping is strong, which points to the possible role of many-body effects. Besides confirming a universal relationship between the spin polarization and the surface state structure, our data provide an empirical guiding principle for tuning the spin polarization in topological insulators.
106 - T. Sato , Y. Tanaka , K. Nakayama 2012
We have performed angle-resolved photoemission spectroscopy of the strongly spin-orbit coupled low-carrier density superconductor Sn1-xInxTe (x = 0.045) to elucidate the electronic states relevant to the possible occurrence of topological superconduc tivity recently reported for this compound from point-contact spectroscopy. The obtained energy-band structure reveals a small holelike Fermi surface centered at the L point of the bulk Brillouin zone, together with a signature of a topological surface state which indicates that this superconductor is essentially a doped topological crystalline insulator characterized by band inversion and mirror symmetry. A comparison of the electronic states with a band-non-inverted superconductor possessing a similar Fermi surface structure, Pb1-xTlxTe, suggests that the anomalous behavior in the superconducting state of Sn1-xInxTe is likely to be related to the peculiar orbital characteristics of the bulk valence band and/or the presence of a topological surface state.
129 - Y. Tanaka , Zhi Ren , T. Sato 2012
Topological insulators materialize a topological quantum state of matter where unusual gapless metallic state protected by time-reversal symmetry appears at the edge or surface. Their discovery stimulated the search for new topological states protect ed by other symmetries, and a recent theory predicted the existence of topological crystalline insulators (TCIs) in which the metallic surface states are protected by mirror symmetry of the crystal. However, its experimental verification has not yet been reported. Here we show the first and definitive experimental evidence for the TCI phase in tin telluride (SnTe) which was recently predicted to be a TCI. Our angle-resolved photoemission spectroscopy shows clear signature of a metallic Dirac-cone surface band with its Dirac point slightly away from the edge of the surface Brillouin zone in SnTe. On the other hand, such a gapless surface state is absent in a cousin material lead telluride (PbTe), in line with the theoretical prediction. Our result establishes the presence of a TCI phase, and opens new avenues for exotic topological phenomena.
77 - S. Souma , K. Eto , M. Nomura 2011
We have performed angle-resolved photoemission spectroscopy on Pb(Bi1-xSbx)2Te4, which is a member of lead-based ternary tellurides and has been theoretically proposed as a candidate for a new class of three-dimensional topological insulators (TIs). In PbBi2Te4, we found a topological surface state with a hexagonally deformed Dirac-cone band dispersion, indicating that this material is a strong TI with a single topological surface state at the Brillouin-zone center. Partial replacement of Bi with Sb causes a marked change in the Dirac carrier concentration, leading to the sign change of Dirac carriers from n-type to p-type. The Pb(Bi1-xSbx)2Te4 system with tunable Dirac carriers thus provides a new platform for investigating exotic topological phenomena.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا