ترغب بنشر مسار تعليمي؟ اضغط هنا

Relaxation dynamics of embedded metal nanoparticles after ultrafast laser pulse excitation is driven by thermal phenomena of different origins the accurate description of which is crucial for interpreting experimental results: hot electron gas genera tion, electron-phonon coupling, heat transfer to the particle environment and heat propagation in the latter. Regardingthis last mechanism, it is well known that heat transport in nanoscale structures and/or at ultrashort timescales may deviate from the predictions of the Fourier law. In these cases heat transport may rather be described by the Boltzmann transport equation. We present a numerical model allowing us to determine the electron and lattice temperature dynamics in a spherical gold nanoparticle core under subpicosecond pulsed excitation, as well as that of the surrounding shell dielectric medium. For this, we have used the electron-phonon coupling equation in the particle with a source term linked with the laser pulse absorption, and the ballistic-diffusive equations for heat conduction in the host medium. Either thermalizing or adiabatic boundary conditions have been considered at the shell external surface. Our results show that the heat transfer rate from the particle to the matrix can be significantly smaller than the prediction of Fouriers law. Consequently, the particle temperature rise is larger and its cooling dynamics might be slower than that obtained by using Fouriers law. This difference is attributed to the nonlocal and nonequilibrium heat conduction in the vicinity of the core nanoparticle. These results are expected to be of great importance for analyzing pump-probe experiments performed on single nanoparticles or nanocomposite media.
We compute the thermal conductance between two nanoparticles in contact based on the Molecular Dynamics technique. The contact is generated by letting both particles stick together under van der Waals attractions. The thermal conductance is derived f rom the fluctuation-dissipation theorem and the time fluctuations of the exchanged power. We show that the conductance is proportional to the atoms involved in the thermal interaction. In the case of silica, the atomic contribution to the thermal conductance is in the range of 0.5 to 3 nW.K-1. This result fits to theoretical predictions based on characteristic times of the temperature fluctuation. The order of magnitude of the contact conductance is 1 mu W.K-1 when the cross section ranges from 1 to 10nm2.
64 - S. Volz 2007
The thermal resistance between a nanostructure and a half-body is calculated in the framework of particle-phonons physics. The current models approximate the nanostructure as a thermal bath. We prove that the multireflections of heat carriers in the nanostructure significantly increase resistance in contradiction with former predictions. This increase depends on the shape of the nanostructure and the heat carriers mean free path only. We provide a general and simple expression for the contact resistance and examine the specific cases of nanowires and nanoparticles.
81 - Po Chapuis 2007
Microparticles including paraffin are currently used for textiles coating in order to deaden thermal shocks. We will show that polymer nanoparticles embedded in those microsized capsules allow for decreasing the thermal conductivity of the coating an d enhance the protection in the stationary regime. A reasonable volume fraction of polymer nanoparticles reduces the conductivity more than predicted by Maxwell mixing rules. Besides, measurements prove that the polymer nanoparticles do not affect the latent heat and even improve the phase change behaviour as well as the mechanical properties.
68 - S. Gom`es , F. Nepveu 2007
Surface temperature measurements were performed with a Scanning Thermal Microscope mounted with a thermoresistive wire probe of micrometrSurface temperature measurements were performed with a Scanning Thermal Microscope mounted with a thermoresistive wire probe of micrometric size. A CMOS device was designed with arrays of resistive lines 0.35$mu$m in width. The array periods are 0.8micron and 10micron to study the spatial resolution of the SThM. Integrated Circuits with passivation layers of micrometric and nanometric thicknesses were tested. To enhance signal-to-noise ratio, the resistive lines were heated with an AC current. The passivation layer of nanometric thickness allows us to distinguish the lines when the array period is 10micron. The results raise the difficulties of the SThM measurement due to the design and the topography of ICs on one hand and the size of the thermal probe on the other hand.ic size. A CMOS device was designed with arrays of resistive lines 0.35$mu$m in width. The array periods are 0.8micron and 10micron to study the spatial resolution of the SThM. Integrated Circuits with passivation layers of micrometric and nanometric thicknesses were tested. To enhance signal-to-noise ratio, the resistive lines were heated with an AC current. The passivation layer of nanometric thickness allows us to distinguish the lines when the array period is 10micron. The results raise the difficulties of the SThM measurement due to the design and the topography of ICs on one hand and the size of the thermal probe on the other hand.
In this work, a new algorithm is proposed to compute single particle (infinite dilution) thermodiffusion using Non-Equilibrium Molecular Dynamics simulations through the estimation of the thermophoretic force that applies on a solute particle. This s cheme is shown to provide consistent results for simple Lennard-Jones fluids and for model nanofluids (spherical non-metallic nanoparticles + Lennard-Jones fluid) where it appears that thermodiffusion amplitude, as well as thermal conductivity, decrease with nanoparticles concentration. Then, in nanofluids in the liquid state, by changing the nature of the nanoparticle (size, mass and internal stiffness) and of the solvent (quality and viscosity) various trends are exhibited. In all cases the single particle thermodiffusion is positive, i.e. the nanoparticle tends to migrate toward the cold area. The single particle thermal diffusion 2 coefficient is shown to be independent of the size of the nanoparticle (diameter of 0.8 to 4 nm), whereas it increases with the quality of the solvent and is inversely proportional to the viscosity of the fluid. In addition, this coefficient is shown to be independent of the mass of the nanoparticle and to increase with the stiffness of the nanoparticle internal bonds. Besides, for these configurations, the mass diffusion coefficient behavior appears to be consistent with a Stokes-Einstein like law.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا