ترغب بنشر مسار تعليمي؟ اضغط هنا

Many modern cosmological scenarios feature large volumes of spacetime in a de Sitter vacuum phase. Such models are said to be faced with a Boltzmann Brain problem - the overwhelming majority of observers with fixed local conditions are random fluctua tions in the de Sitter vacuum, rather than arising via thermodynamically sensible evolution from a low-entropy past. We argue that this worry can be straightforwardly avoided in the Many-Worlds (Everett) approach to quantum mechanics, as long as the underlying Hilbert space is infinite-dimensional. In that case, de Sitter settles into a truly stationary quantum vacuum state. While there would be a nonzero probability for observing Boltzmann-Brain-like fluctuations in such a state, observation refers to a specific kind of dynamical process that does not occur in the vacuum (which is, after all, time-independent). Observers are necessarily out-of-equilibrium physical systems, which are absent in the vacuum. Hence, the fact that projection operators corresponding to states with observers in them do not annihilate the vacuum does not imply that such observers actually come into existence. The Boltzmann Brain problem is therefore much less generic than has been supposed.
Primordial quantum fluctuations produced by inflation are conventionally assumed to be statistically homogeneous, a consequence of translational invariance. In this paper we quantify the potentially observable effects of a small violation of translat ional invariance during inflation, as characterized by the presence of a preferred point, line, or plane. We explore the imprint such a violation would leave on the cosmic microwave background anisotropy, and provide explicit formulas for the expected amplitudes $<a_{lm}a_{lm}^*>$ of the spherical-harmonic coefficients.
A long-range fifth force coupled to dark matter can induce a coupling to ordinary matter if the dark matter interacts with Standard Model fields. We consider constraints on such a scenario from both astrophysical observations and laboratory experimen ts. We also examine the case where the dark matter is a weakly interacting massive particle, and derive relations between the coupling to dark matter and the coupling to ordinary matter for different models. Currently, this scenario is most tightly constrained by galactic dynamics, but improvements in Eotvos experiments can probe unconstrained regions of parameter space.
203 - Sean M. Carroll 2008
Despite the obvious utility of the concept, it has often been argued that time does not exist. I take the opposite perspective: lets imagine that time does exist, and the universe is described by a quantum state obeying ordinary time-dependent quantu m mechanics. Reconciling this simple picture with the known facts about our universe turns out to be a non-trivial task, but by taking it seriously we can infer deep facts about the fundamental nature of reality. The arrow of time finds a plausible explanation in a Heraclitean universe, described by a quantum state eternally evolving in an infinite-dimensional Hilbert space.
We propose a new way to hide extra dimensions without invoking branes, based on Lorentz-violating tensor fields with expectation values along the extra directions. We investigate the case of a single vector ``aether field on a compact circle. In such a background, interactions of other fields with the aether can lead to modified dispersion relations, increasing the mass of the Kaluza-Klein excitations. The mass scale characterizing each Kaluza-Klein tower can be chosen independently for each species of scalar, fermion, or gauge boson. No small-scale deviations from the inverse square law for gravity are predicted, although light graviton modes may exist.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا