ﻻ يوجد ملخص باللغة العربية
Despite the obvious utility of the concept, it has often been argued that time does not exist. I take the opposite perspective: lets imagine that time does exist, and the universe is described by a quantum state obeying ordinary time-dependent quantum mechanics. Reconciling this simple picture with the known facts about our universe turns out to be a non-trivial task, but by taking it seriously we can infer deep facts about the fundamental nature of reality. The arrow of time finds a plausible explanation in a Heraclitean universe, described by a quantum state eternally evolving in an infinite-dimensional Hilbert space.
We analyze various possible interpretations of the narrow state $D_{sJ}^+(2632)$ observed by SELEX Collaboration recently, which lies above threshold and has abnormal decay pattern. These interpretations include: (1) sever
In the system of a gravitating Q-ball, there is a maximum charge $Q_{{rm max}}$ inevitably, while in flat spacetime there is no upper bound on $Q$ in typical models such as the Affleck-Dine model. Theoretically the charge $Q$ is a free parameter, and
The concept of boundary plays an important role in several branches of general relativity, e.g., the variational principle for the Einstein equations, the event horizon and the apparent horizon of black holes, the formation of trapped surfaces. On th
Combining insights from both the effective field theory of quantum gravity and black hole thermodynamics, we derive two novel consistency relations to be satisfied by any quantum theory of gravity. First, we show that a particular combination of the
We study the emission of large-scales wavelength space-time waves during the inflationary expansion of the universe, produced by back-reaction effects. As an example, we study an inflationary model with variable time scale, where the scale factor of