ترغب بنشر مسار تعليمي؟ اضغط هنا

We present spatially, temporally, and spectrally resolved narrow- and broad-band x-ray images of polar-direct-drive (PDD) implosions on OMEGA. These self-emission images were obtained during the deceleration phase and bang time using several multiple monochromatic x-ray imaging instruments fielded along two or three quasi-orthogonal lines-of-sight including equatorial and polar views. The instruments recorded images based on K-shell lines from a titanium tracer located in the shell as well as continuum emission. These observations constitute the first such data obtained for PDD implosions. The image data show features attributed to zero-order hydrodynamics. Equatorial view synthetic images obtained from post-processing a 2D hydrodynamic simulation are consistent with the experimental observation. Polar view images show a pentagonal pattern that correlates with the PDD laser illumination used on OMEGA, thus revealing a 3D aspect of these experiments not previously observed.
The interaction of two lasers with a difference frequency near that of the ambient plasma frequency produces beat waves that can resonantly accelerate thermal electrons. These beat waves can be used to drive electron current and thereby embed magneti c fields into the plasma [D. R. Welch et al., Phys. Rev. Lett. 109, 225002 (2012)]. In this paper, we present two-dimensional particle-in-cell simulations of the beat-wave current-drive process over a wide range of angles between the injected lasers, laser intensities, and plasma densities. We discuss the application of this technique to the magnetization of dense plasmas, motivated in particular by the problem of forming high-beta plasma targets in a standoff manner for magneto-inertial fusion. The feasibility of a near-term experiment embedding magnetic fields using lasers with micron-scale wavelengths into a $sim 10^{18}$-cm$^{-3}$-density plasma is assessed.
This work describes the scientific basis and associated simulation results for the magnetization of an unmagnetized plasma via beat wave current drive. Two-dimensional electromagnetic particle-in-cell simulations have been performed for a variety of angles between the injected waves to demonstrate beat wave generation in agreement with theoretical predictions of the beat-wave wave vector and saturation time, revealing new 2D effects. The simulations clearly demonstrate electron acceleration by the beat waves and resultant current drive and magnetic field generation. The basic process depends entirely on the angle between the parent waves and the ratio of the beat-wave phase velocity to the electron thermal velocity. The wave to magnetic energy conversion efficiency of the cases examined is as high as 0.2%. The technique could enable novel plasma experiments in which the use of magnetic coils is infeasible.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا