ترغب بنشر مسار تعليمي؟ اضغط هنا

We utilize and characterize high-power, high-linearity modified uni-traveling carrier (MUTC) photodiodes for low-phase-noise photonic microwave generation based on optical frequency division. When illuminated with picosecond pulses from a repetition- rate-multiplied gigahertz Ti:sapphire modelocked laser, the photodiodes can achieve 10 GHz signal power of +14 dBm. Using these diodes, a 10 GHz microwave tone is generated with less than 500 attoseconds absolute integrated timing jitter (1 Hz-10 MHz) and a phase noise floor of -177 dBc/Hz. We also characterize the electrical response, amplitude-to-phase conversion, saturation and residual noise of the MUTC photodiodes.
We present an optical-electronic approach to generating microwave signals with high spectral purity. By circumventing shot noise and operating near fundamental thermal limits, we demonstrate 10 GHz signals with an absolute timing jitter for a single hybrid oscillator of 420 attoseconds (1Hz - 5 GHz).
We describe a Yb-fiber based laser comb, with a focus on the relationship between net-cavity dispersion and the frequency noise on the comb. While tuning the net cavity dispersion from anomalous to normal, we measure the amplitude noise (RIN), offset frequency (f_CEO) linewidth, and the resulting frequency noise spectrum on f_CEO. We find that the laser operating at zero net-cavity dispersion has many advantages, including an approximately 100x reduction in free-running f_CEO linewidth and frequency noise power spectral density between laser operation at normal and zero dispersion. In this latter regime, we demonstrate a phase-locked f_CEO beat with low residual noise.
187 - J. Taylor , S. Datta , A. Hati 2011
Fluctuations of the optical power incident on a photodiode can be converted into phase fluctuations of the resulting electronic signal due to nonlinear saturation in the semiconductor. This impacts overall timing stability (phase noise) of microwave signals generated from a photodetected optical pulse train. In this paper, we describe and utilize techniques to characterize this conversion of amplitude noise to phase noise for several high-speed (>10 GHz) InGaAs P-I-N photodiodes operated at 900 nm. We focus on the impact of this effect on the photonic generation of low phase noise 10 GHz microwave signals and show that a combination of low laser amplitude noise, appropriate photodiode design, and optimum average photocurrent is required to achieve phase noise at or below -100 dBc/Hz at 1 Hz offset a 10 GHz carrier. In some photodiodes we find specific photocurrents where the power-to-phase conversion factor is observed to go to zero.
There has been increased interest in the use and manipulation of optical fields to address challenging problems that have traditionally been approached with microwave electronics. Some examples that benefit from the low transmission loss, agile modul ation and large bandwidths accessible with coherent optical systems include signal distribution, arbitrary waveform generation, and novel imaging. We extend these advantages to demonstrate a microwave generator based on a high-Q optical resonator and a frequency comb functioning as an optical-to-microwave divider. This provides a 10 GHz electrical signal with fractional frequency instability <8e-16 at 1 s, a value comparable to that produced by the best microwave oscillators, but without the need for cryogenic temperatures. Such a low-noise source can benefit radar systems, improve the bandwidth and resolution of communications and digital sampling systems, and be valuable for large baseline interferometry, precision spectroscopy and the realization of atomic time.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا