ترغب بنشر مسار تعليمي؟ اضغط هنا

Photonic microwave generation with high-power photodiodes

528   0   0.0 ( 0 )
 نشر من قبل Scott Diddams
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We utilize and characterize high-power, high-linearity modified uni-traveling carrier (MUTC) photodiodes for low-phase-noise photonic microwave generation based on optical frequency division. When illuminated with picosecond pulses from a repetition-rate-multiplied gigahertz Ti:sapphire modelocked laser, the photodiodes can achieve 10 GHz signal power of +14 dBm. Using these diodes, a 10 GHz microwave tone is generated with less than 500 attoseconds absolute integrated timing jitter (1 Hz-10 MHz) and a phase noise floor of -177 dBc/Hz. We also characterize the electrical response, amplitude-to-phase conversion, saturation and residual noise of the MUTC photodiodes.



قيم البحث

اقرأ أيضاً

We present an optical-electronic approach to generating microwave signals with high spectral purity. By circumventing shot noise and operating near fundamental thermal limits, we demonstrate 10 GHz signals with an absolute timing jitter for a single hybrid oscillator of 420 attoseconds (1Hz - 5 GHz).
Highly selective and reconfigurable microwave filters are of great importance in radio-frequency signal processing. Microwave photonic (MWP) filters are of particular interest, as they offer flexible reconfiguration and an order of magnitude higher f requency tuning range than electronic filters. However, all MWP filters to date have been limited by trade-offs between key parameters such as tuning range, resolution, and suppression. This problem is exacerbated in the case of integrated MWP filters, blocking the path to compact, high performance filters. Here we show the first chip-based MWP band-stop filter with ultra-high suppression, high resolution in the MHz range, and 0-30 GHz frequency tuning. This record performance was achieved using an ultra-low Brillouin gain from a compact photonic chip and a novel approach of optical resonance-assisted RF signal cancellation. The results point to new ways of creating energy-efficient and reconfigurable integrated MWP signal processors for wireless communications and defence applications.
221 - J. Taylor , S. Datta , A. Hati 2011
Fluctuations of the optical power incident on a photodiode can be converted into phase fluctuations of the resulting electronic signal due to nonlinear saturation in the semiconductor. This impacts overall timing stability (phase noise) of microwave signals generated from a photodetected optical pulse train. In this paper, we describe and utilize techniques to characterize this conversion of amplitude noise to phase noise for several high-speed (>10 GHz) InGaAs P-I-N photodiodes operated at 900 nm. We focus on the impact of this effect on the photonic generation of low phase noise 10 GHz microwave signals and show that a combination of low laser amplitude noise, appropriate photodiode design, and optimum average photocurrent is required to achieve phase noise at or below -100 dBc/Hz at 1 Hz offset a 10 GHz carrier. In some photodiodes we find specific photocurrents where the power-to-phase conversion factor is observed to go to zero.
We investigate the impact of pulse interleaving and optical amplification on the spectral purity of microwave signals generated by photodetecting the pulsed output of an Er:fiber-based optical frequency comb. It is shown that the microwave phase nois e floor can be extremely sensitive to delay length errors in the interleaver, and the contribution of the quantum noise from optical amplification to the phase noise can be reduced ~10 dB for short pulse detection. We exploit optical amplification, in conjunction with high power handling modified uni-traveling carrier photodetectors, to generate a phase noise floor on a 10 GHz carrier of -175 dBc/Hz, the lowest ever demonstrated in the photodetection of a mode-locked fiber laser. At all offset frequencies, the photodetected 10 GHz phase noise performance is comparable to or better than the lowest phase noise results yet demonstrated with stabilized Ti:sapphire frequency combs.
Optical beamforming networks (OBFNs) based on optical true time delay lines (OTTDLs) are well-known as the promising candidate to solve the bandwidth limitation of traditional electronic phased array antennas (PAAs) due to beam squinting. Here we rep ort the first monolithic 1x8 microwave photonic beamformer based on switchable OTTDLs on the silicon-on-insulator platform. The chip consists of a modulator, an eight-channel OBFN, and 8 photodetectors, which includes hundreds of active and passive components in total. It has a wide operating bandwidth from 8 to 18 GHz, which is almost two orders larger than that of electronic PAAs. The beam can be steered to 31 distinguishable angles in the range of -75.51{deg} to 75.64{deg} based on the beam pattern calculation with the measured RF response. The response time for beam steering is 56 {mu}s. These results represent a significant step towards the realization of integrated microwave photonic beamformers that can satisfy compact size and low power consumption requirements for the future radar and wireless communication systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا