ترغب بنشر مسار تعليمي؟ اضغط هنا

We report the redshift of an unlensed, highly obscured submillimetre galaxy (SMG), HS1700.850.1, the brightest SMG (S850um =19.1 mJy) detected in the JCMT/SCUBA-2 Baryonic Structure Survey, based on the detection of its CO line emission. Using the IR AM PdBI-WIDEX with 3.6GHz band width, we serendipitously detect an emission line at 150.6 GHz. From a search over 14.5 GHz in the 3-mm and 2-mm atmospheric windows, we confirm the identification of this line as CO(5-4) at z = 2.816, meaning that it does not reside in the z~2.30 proto-cluster in this field. Measurement of the 870um source size (<0.85) from the Sub-Millimeter Array (SMA) confirms a compact emission in a S870um =14.5mJy, LIR~10^13 Lsun component, suggesting an Eddington-limited starburst. We use the double-peaked CO line profile measurements along with the SMA size constraints to study the gas dynamics of a HyLIRG, estimating the gas and dynamical masses of HS1700.850.1. While HS1700.850.1 is one of the most extreme galaxies known in the Universe, we find that it occupies a relative void in the Lyman-Break Galaxy distribution in this field. Comparison with other extreme objects at similar epochs (HyLIRG Quasars), and cosmological simulations, suggests such an anti-bias of bright SMGs could be relatively common, with the brightest SMGs rarely occupying the most overdense regions at z=2-4.
We report the blind detection of 12CO emission from a Distant Red Galaxy, HS1700.DRG55. We have used the IRAM PdBI-WIDEX, with its 3.6GHz of instantaneous dual-polarization bandwidth, to target 12CO(3--2) from galaxies lying in the proto-cluster at z =2.300 in the field HS1700+64. If indeed this line in DRG55 is 12CO(3--2), its detection at 104.9GHz indicates a z_CO=2.296. None of the other eight known z~2.30 proto-cluster galaxies lying within the primary beam (PB) are detected in 12CO, although the limits are ~2x worse towards the edge of the PB where several lie. The optical/near-IR magnitudes of DRG55 (R_AB>27, K_AB=22.3) mean that optical spectroscopic redshifts are difficult with 10m-class telescopes, but near-IR redshifts would be feasible. The 24um-implied SFR (210 M_odot yr-1), stellar mass (~10^11 M-odot) and 12CO line luminosity (3.6x10^10 K km s-1 pc^2) are comparable to other normal 12CO-detected star forming galaxies in the literature, although the galaxy is some ~2 mag (~6x) fainter in the rest-frame UV than 12CO-detected galaxies at z>2. The detection of DRG55 in 12CO complements three other 12CO detected UV-bright galaxies in this proto-cluster from previous studies, and suggests that many optically faint galaxies in the proto-cluster may host substantial molecular gas reservoirs, and a full blind census of 12CO in this overdense environment is warranted.
We present results from a spectroscopic survey of the dwarf spheroidal And XXII and the two extended clusters EC1 and EC2. These three objects are candidate satellites of the Triangulum galaxy, M33, which itself is likely a satellite of M31. We use t he DEep Imaging Multi-Object Spectrograph mounted on the Keck-II telescope to derive radial velocities for candidate member stars of these objects and thereby identify the stars that are most likely actual members. Eleven most probable stellar members (of 13 candidates) are found for AndXXII. We obtain an upper limit of sigma_v < 6.0 km s-1 for the velocity dispersion of AndXXII, [Fe/H] ~ -1.6 for its metallicity, and 255pc for the Plummer radius of its projected density profile. We construct a colour magnitude diagram for AndXXII and identify both the red giant branch and the horizontal branch. The position of the latter is used to derive a heliocentric distance to And XXII of 853 pm 26 kpc. The combination of the radial velocity, distance, and angular position of AndXXII indicates that it is a strong candidate for being the first known satellite of M33 and one of the very few examples of a galactic satellite of a satellite. N-body simulations imply that this conclusion is unchanged even if M31 and M33 had a strong encounter in the past few Gyr. We test the hypothesis that the extended clusters highlight tidally stripped galaxies by searching for an excess cloud of halo-like stars in their vicinity. We find such a cloud for the case of EC1 but not EC2. The three objects imply a dynamical mass for M33 that is consistent with previous estimates.
(abridged) We present the first study of the farIR properties of high redshift, radio-selected ULIRGs using deep observations obtained with SPIRE from the Herschel Multi-tiered Extragalactic Survey (HerMES). These galaxies span a large range of 850um fluxes from submillimetre-luminous ~10mJy SCUBA galaxies -- SMGs to ~1.5mJy from stacked SCUBA non-detections, thus likely representing a complete distribution of ULIRG spectral energy distributions. From Keck spectroscopic surveys in the Lockman-North field we identified a sample of 31 SMGs and 37 submillimetre-faint, optically-faint radio galaxies (OFRGs), all with radio-inferred IR luminosities >10^12 Lsun. These galaxies were cross-identified with SPIRE 250, 350 and 500um catalogs based on fluxes extracted at 24um positions in the SWIRE survey, yielding a sample of more than half of the galaxies well detected in at least two of the SPIRE bandpasses. By fitting greybody dust models to the SPIRE photometry together with SCUBA 850um measurements, we infer dust temperatures and far-infrared luminosities. The OFRGs detected by SPIRE have median <T_d>= 41+-5 K and the SMGs have <T_d>= 34+-5 K, both in reasonable agreement with previous (pre-Herschel) estimates, reaffirming that the local FIR/radio correlation holds (at least for this subset of high-z ULIRGs) at high redshift. Our observations firstly confirm that a substantial fraction of OFRGs exhibit large infrared luminosities corresponding to SFRs of ~400 Msun/yr. The SPIRE observations secondly confirm the higher dust temperatures for these OFRGs than similarly selected SMGs, consistent with early predictions of the submm-faint radio populations. Our observations also clearly confirm the large infrared luminosities of most SMGs selected with S850um>5 mJy and radio and strong 24um detections, corresponding to SFRs of ~700 Msun/yr.
We present the results of a spectroscopic survey of the recently discovered M31 satellites And XV and And XVI, lying at projected distances from the centre of M31 of 93 and 130 kpc respectively. These satellites lie to the South of M31, in regions of the stellar halo which wide field imaging has revealed as relative voids (compared to the degree-scale coherent stream-like structures). Using the DEep Imaging Multi-Object Spectrograph mounted on the Keck II telescope, we have defined probable members of these satellites, for which we derive radial velocities as precise as ~6 km/s down to i~21.5. While the distance to And XVI remains the same as previously reported (525pm50 kpc), we have demonstrated that the brightest three stars previously used to define the tip of the red giant branch (TRGB) in And XV are in fact Galactic, and And XV is actually likely to be much more distant at 770pm70 kpc (compared to the previous 630 kpc), increasing the luminosity from MV -9.4 to MV~-9.8. The And XV velocity dispersion is resolved with vr =-339+7-6 km/s and sigma-v = 11+7-5 km/s. The And XVI dispersion is not quite resolved at 1sigma with vr =-385+5-6 km/s and sigma-v = 0+10-indef km/s. Using the photometry of the confirmed member stars, we find metallicities of And XV (median [Fe/H]=-1.58, interquar- tile range +-0.08), and And XVI (median [Fe/H]=-2.23, interquartile range +-0.12). Stacking the spectra of the member stars, we find spectroscopic [Fe/H]=-1.8 (-2.1) for And XV (And XVI), with a uncertainty of ~0.2 dex in both cases. Our measure- ments of And XV reasonably resolve its mass (~10^8 Msun) and suggest a polar orbit, while the velocity of And XVI suggests it is approaching the M31 escape velocity given its large M31-centric distance.
We present detailed observations of a z~1.99 cluster of submillimeter galaxies (SMGs), discovered as the strongest redshift spike in our entire survey of ~100 SMGs across 800 square arcmin. It is the largest blank-field SMG concentration currently kn own and has <0.01% chance of being drawn from the underlying selection function for SMGs. We have compared UV observations of galaxies at this redshift, where we find a much less dramatic overdensity, having an 11% chance of being drawn from its selection function. We use this z~1.99 overdensity to compare the biasing of UV- and submm-selected galaxies, and test whether SMGs could reside in less overdense environments, with their apparent clustering signal being dominated by highly active merger periods in modest mass structures. This impressively active formation phase in a low mass cluster is not something seen in simulations, although we propose a toy model using merger bias which could account for the bias seen in the SMGs. While enhanced buildup of stellar mass appears characteristic of other high-z galaxy clusters, neither the UV- nor submm-galaxies in this structure exhibit larger stellar masses than their field galaxy counterparts (although the excess of SMGs in the structure represents a larger volume-averaged stellar mass than the field). Our findings have strong implications for future surveys for high-z galaxies at long wavelengths such as SCUBA2 and Herschel. We suggest that since these surveys will select galaxies during their episodes of peak starbursts, they could probe a much wider range of environments than just the progenitors of rich clusters, revealing more completely the key events and stages in galaxy formation and assembly.
(abridged) We present a spectroscopic analysis of five stellar streams (`A, `B, `Cr, `Cp and `D) as well as the extended star cluster, EC4, which lies within streamC, all discovered in the halo of M31 from our CFHT/MegaCam survey. These spectroscopic results were initially serendipitous, making use of our existing observations from the DEep Imaging Multi-Object Spectrograph mounted on the Keck II telescope, and thereby emphasizing the ubiquity of tidal streams that account for ~70% of the M31 halo stars in the targeted fields. Subsequent spectroscopy was then procured in streamCr/p and streamD to trace the velocity gradient along the streams. For the cluster EC4, candidate member stars with average [Fe/H]~-1.4 (Fe/H_spec=-1.6), are found at v_{hel}=-285 km/s suggesting it could be related to streamCp. No similarly obvious cold kinematic candidate is found for streamD, although candidates are proposed in both of two spectroscopic pointings along the stream (both at -400 km/s). Spectroscopy near the edge of streamB suggests a likely kinematic detection, while a candidate kinematic detection of streamA is found (plausibly associated to M33 rather than M31). The low dispersion of the streams in kinematics, physical thickness, and metallicity makes it hard to reconcile with a scenario whereby these stream structures as an ensemble are related to the giant southern stream. We conclude that the M31 stellar halo is largely made up of multiple kinematically cold streams.
High-redshift, dust-obscured galaxies -- selected to be luminous in the radio but relatively faint at 850um -- appear to represent a different population from the ultra-luminous submillimeter- (submm-) bright population. They may be star-forming gala xies with hotter dust temperatures or they may have lower far-infrared luminosities and larger contributions from obscured active galactic nuclei (AGN). Here we present observations of three z~2 examples of this population, which we term submm-faint radio galaxies (SFRGs) in CO(3-2) using the IRAM Plateau de Bure Interferometer to study their gas and dynamical properties. We estimate the molecular gas mass in each of the three SFRGs (8.3x10^{9} M_odot, <5.6x10^{9} M_odot and 15.4x10^{9} M_odot, respectively) and, in the case of RG163655, a dynamical mass by measurement of the width of the CO(3-2) line (8x10^{10} csc^2i M_odot). While these gas masses are substantial, on average they are 4x lower than submm-selected galaxies (SMGs). Radio-inferred star formation rates (<SFR_radio>=970 M_odotyr) suggest much higher star-formation efficiencies than are found for SMGs, and shorter gas depletion time scales (~11 Myr), much shorter than the time required to form their current stellar masses (~160 Myr; ~10^{11} M_odot). By contrast, SFRs may be overestimated by factors of a few, bringing the efficiencies in line with those typically measured for other ultraluminous star-forming galaxies and suggesting SFRGs are more like ultraviolet- (UV-)selected star-forming galaxies with enhanced radio emission. A tentative detection of rga at 350um suggests hotter dust temperatures -- and thus similar gas-to-dust mass fractions -- as the SMGs. We conclude that SFRGs radio luminosities are larger than would naturally scale from local ULIRGs given their gas masses or gas fractions.
We present spectroscopic observations of the AndXII dwarf spheroidal galaxy using DEIMOS/Keck-II, showing it to be moving rapidly through the Local Group (-556 km/s heliocentric velocity, -281 km/s relative to Andromeda from the MW), falling into the Local Group from ~115 kpc beyond Andromedas nucleus. AndXII therefore represents a dwarf galaxy plausibly falling into the Local Group for the first time, and never having experienced a dense galactic environment. From Green Bank Telescope observations, a limit on the H{I} gas mass of <3000 Msun suggests that AndXIIs gas could have been removed prior to experiencing the tides of the Local Group galaxies. Orbit models suggest the dwarf is close to the escape velocity of M31 for published mass models. AndXII is our best direct evidence for the late infall of satellite galaxies, a prediction of cosmological simulations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا