ترغب بنشر مسار تعليمي؟ اضغط هنا

Do submillimeter galaxies really trace the most massive dark matter halos? Discovery of a high-z cluster in a highly active phase of evolution

37   0   0.0 ( 0 )
 نشر من قبل Scott C. Chapman
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present detailed observations of a z~1.99 cluster of submillimeter galaxies (SMGs), discovered as the strongest redshift spike in our entire survey of ~100 SMGs across 800 square arcmin. It is the largest blank-field SMG concentration currently known and has <0.01% chance of being drawn from the underlying selection function for SMGs. We have compared UV observations of galaxies at this redshift, where we find a much less dramatic overdensity, having an 11% chance of being drawn from its selection function. We use this z~1.99 overdensity to compare the biasing of UV- and submm-selected galaxies, and test whether SMGs could reside in less overdense environments, with their apparent clustering signal being dominated by highly active merger periods in modest mass structures. This impressively active formation phase in a low mass cluster is not something seen in simulations, although we propose a toy model using merger bias which could account for the bias seen in the SMGs. While enhanced buildup of stellar mass appears characteristic of other high-z galaxy clusters, neither the UV- nor submm-galaxies in this structure exhibit larger stellar masses than their field galaxy counterparts (although the excess of SMGs in the structure represents a larger volume-averaged stellar mass than the field). Our findings have strong implications for future surveys for high-z galaxies at long wavelengths such as SCUBA2 and Herschel. We suggest that since these surveys will select galaxies during their episodes of peak starbursts, they could probe a much wider range of environments than just the progenitors of rich clusters, revealing more completely the key events and stages in galaxy formation and assembly.

قيم البحث

اقرأ أيضاً

Using the combined capabilities of the large near-infrared Palomar/DEEP-2 survey, and the superb resolution of the ACS HST camera, we explore the size evolution of 831 very massive galaxies (M*>10^{11}h_{70}^{-2}M_sun) since z~2. We split our sample according to their light concentration using the Sersic index n. At a given stellar mass, both low (n<2.5) and high (n>2.5) concentrated objects were much smaller in the past than their local massive counterparts. This evolution is particularly strong for the highly concentrated (spheroid-like) objects. At z~1.5, massive spheroid-like objects were a factor of 4(+-0.4) smaller (i.e. almost two orders of magnitudes denser) than those we see today. These small sized, high mass galaxies do not exist in the nearby Universe, suggesting that this population merged with other galaxies over several billion years to form the largest galaxies we see today.
We use subhalo abundance matching (SHAM) to model the stellar mass function (SMF) and clustering of the Baryon Oscillation Spectroscopic Survey (BOSS) CMASS sample at $zsim0.5$. We introduce a novel method which accounts for the stellar mass incomple teness of CMASS as a function of redshift, and produce CMASS mock catalogs which include selection effects, reproduce the overall SMF, the projected two-point correlation function $w_{rm p}$, the CMASS $dn/dz$, and are made publicly available. We study the effects of assembly bias above collapse mass in the context of age matching and show that these effects are markedly different compared to the ones explored by Hearin et al. (2013) at lower stellar masses. We construct two models, one in which galaxy color is stochastic (AbM model) as well as a model which contains assembly bias effects (AgM model). By confronting the redshift dependent clustering of CMASS with the predictions from our model, we argue that that galaxy colors are not a stochastic process in high-mass halos. Our results suggest that the colors of galaxies in high-mass halos are determined by other halo properties besides halo peak velocity and that assembly bias effects play an important role in determining the clustering properties of this sample.
124 - Peder Norberg 2007
We identify a large sample of isolated bright galaxies and their fainter satellites in the 2dF Galaxy Redshift Survey (2dFGRS). We analyse the dynamics of ensembles of these galaxies selected according to luminosity and morphological type by stacking the positions of their satellites and estimating the velocity dispersion of the combined set. We test our methodology using realistic mock catalogues constructed from cosmological simulations. The method returns an unbiased estimate of the velocity dispersion provided that the isolation criterion is strict enough to avoid contamination and that the scatter in halo mass at fixed primary luminosity is small. Using a maximum likelihood estimator that accounts for interlopers, we determine the satellite velocity dispersion within a projected radius of 175 kpc/h. The dispersion increases with the luminosity of the primary and is larger for elliptical galaxies than for spiral galaxies of similar bJ luminosity. Calibrating the mass-velocity dispersion relation using our mock catalogues, we find a dynamical mass within 175 kpc/h of M_175 ~ 4.0^{+2.3}_{-1.5} 10^12 (L_bJ/L_*) M_sol/h for elliptical galaxies and M_175 ~ 6.3^{+6.3}_{-3.1} 10^11 (L_bJ/L_*)^1.6 Msol/h for spiral galaxies. Finally, we compare our results with recent studies and investigate their limitations using our mock catalogues.
We study the evolution of phase-space density during the hierarchical structure formation of LCDM halos. We compute both a spherically-averaged surrogate for phase-space density (Q) and the coarse-grained distribution function f(x,v) for dark matter particles that lie within~2 virial radii of four Milky-Way-sized dark matter halos. The estimated f(x,v) spans over four decades at any radius. Dark matter particles that end up within two virial radii of a Milky-Way-sized DM halo at $z=0$ have an approximately Gaussian distribution in log(f) at early redshifts, but the distribution becomes increasingly skewed at lower redshifts. The value corresponding to the peak of the Gaussian decreases as the evolution progresses and is well described by a power-law in (1+z). The highest values of f are found at the centers of dark matter halos and subhalos, where f can be an order of magnitude higher than in the center of the main halo. The power-law Q(r) profile likely reflects the distribution of entropy (K = sigma^2/rho^{2/3} propto r^{1.2}), which dark matter acquires as it is accreted onto a growing halo. The estimated f(x, v), on the other hand, exhibits a more complicated behavior. Although the median coarse-grained phase-space density profile F(r) can be approximated by a power-law in the inner regions of halos and at larger radii the profile flattens significantly. This is because phase-space density averaged on small scales is sensitive to the high-f material associated with surviving subhalos, as well as relatively unmixed material (probably in streams) resulting from disrupted subhalos, which contribute a sizable fraction of matter at large radii. (ABRIDGED)
Using observations in the COSMOS field, we report an intriguing correlation between the star formation activity of massive (~10^{11.4}msol) central galaxies, their stellar masses, and the large-scale (~10 Mpc) environments of their group-mass (~10^{1 3.6}msol) dark matter halos. Probing the redshift range z=[0.2,1.0], our measurements come from two independent sources: an X-ray detected group catalog and constraints on the stellar-to-halo mass relation derived from a combination of clustering and weak lensing statistics. At z=1, we find that the stellar mass in star-forming centrals is a factor of two less than in passive centrals at the same halo mass. This implies that the presence or lack of star formation in group-scale centrals cannot be a stochastic process. By z=0, the offset reverses, probably as a result of the different growth rates of these objects. A similar but weaker trend is observed when dividing the sample by morphology rather than star formation. Remarkably, we find that star-forming centrals at z~1 live in groups that are significantly more clustered on 10 Mpc scales than similar mass groups hosting passive centrals. We discuss this signal in the context of halo assembly and recent simulations, suggesting that star-forming centrals prefer halos with higher angular momentum and/or formation histories with more recent growth; such halos are known to evolve in denser large-scale environments. If confirmed, this would be evidence of an early established link between the assembly history of halos on large scales and the future properties of the galaxies that form inside them.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا