ترغب بنشر مسار تعليمي؟ اضغط هنا

We use spectrally-resolved magneto-electroluminescence (EL) measurements to study the energy dependence of hyperfine interactions between polaron and nuclear spins in organic LEDs. Using layered devices based on Bphen/MTDATA -- a well-known exciplex emitter -- we show that the increase in EL emission intensity $I$ due to small applied magnetic fields of order 100 mT is markedly larger at the high-energy blue end of the EL spectrum (dI/I ~11%) than at the low-energy red end (~4%). Concurrently, the widths of the magneto-EL curves increase monotonically from blue to red, revealing an increasing hyperfine coupling between polarons and nuclei and directly providing insight into the energy-dependent spatial extent and localization of polarons.
74 - P. Glasenapp , Luyi Yang , D. Roy 2014
Per the fluctuation-dissipation theorem, the information obtained from spin fluctuation studies in thermal equilibrium is necessarily constrained by the systems linear response functions. However, by including weak radiofrequency magnetic fields, we demonstrate that intrinsic and random spin fluctuations even in strictly unpolarized ensembles emph{can} reveal underlying patterns of correlation and coupling beyond linear response, and can be used to study non-equilibrium and even multiphoton coherent spin phenomena. We demonstrate this capability in a classical vapor of $^{41}$K alkali atoms, where spin fluctuations alone directly reveal Rabi splittings, the formation of Mollow triplets and Autler-Townes doublets, ac Zeeman shifts, and even nonlinear multiphoton coherences.
Strontium titanate (SrTiO$_3$) is a foundational material in the emerging field of complex oxide electronics. While its electronic and optical properties have been studied for decades, SrTiO$_3$ has recently become a renewed materials research focus catalyzed in part by the discovery of magnetism and superconductivity at interfaces between SrTiO$_3$ and other oxides. The formation and distribution of oxygen vacancies may play an essential but as-yet-incompletely understood role in these effects. Moreover, recent signatures of magnetization in gated SrTiO$_3$ have further galvanized interest in the emergent properties of this nominally nonmagnetic material. Here we observe an optically induced and persistent magnetization in oxygen-deficient SrTiO$_{3-delta}$ using magnetic circular dichroism (MCD) spectroscopy and SQUID magnetometry. This zero-field magnetization appears below ~18K, persists for hours below 10K, and is tunable via the polarization and wavelength of sub-bandgap (400-500nm) light. These effects occur only in oxygen-deficient samples, revealing the detailed interplay between magnetism, lattice defects, and light in an archetypal oxide material.
Magnetic doping of semiconductor nanostructures is actively pursued for applications in magnetic memory and spin-based electronics. Central to these efforts is a drive to control the interaction strength between carriers (electrons and holes) and the embedded magnetic atoms. In this respect, colloidal nanocrystal heterostructures provide great flexibility via growth-controlled `engineering of electron and hole wavefunctions within individual nanocrystals. Here we demonstrate a widely tunable magnetic sp-d exchange interaction between electron-hole excitations (excitons) and paramagnetic manganese ions using `inverted core-shell nanocrystals composed of Mn-doped ZnSe cores overcoated with undoped shells of narrower-gap CdSe. Magnetic circular dichroism studies reveal giant Zeeman spin splittings of the band-edge exciton that, surprisingly, are tunable in both magnitude and sign. Effective exciton g-factors are controllably tuned from -200 to +30 solely by increasing the CdSe shell thickness, demonstrating that strong quantum confinement and wavefunction engineering in heterostructured nanocrystal materials can be utilized to manipulate carrier-Mn wavefunction overlap and the sp-d exchange parameters themselves.
We study the low-temperature magneto-photoluminescence (PL) from individual CdSe nanocrystals. Nanocrystals having a small bright exciton fine structure splitting ($<$0.5 meV) exhibit a conventional left- and right-circularly polarized Zeeman PL doub let in applied magnetic fields. In contrast, nanocrystals with large fine structure splitting ($>$1 meV) show an anomalous magneto-PL polarization, wherein the lower-energy peak becomes circularly polarized with increasing field, while the higher-energy peak remains linearly polarized. This unusual behavior arises from strong mixing between the absorbing and emitting bright exciton levels due to strong anisotropic exchange interactions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا