ترغب بنشر مسار تعليمي؟ اضغط هنا

We have discovered a luminous light echo around the normal Type II-Plateau Supernova (SN) 2012aw in Messier 95 (M95; NGC 3351), detected in images obtained approximately two years after explosion with the Wide Field Channel 3 on-board the Hubble Spac e Telescope (HST) by the Legacy ExtraGalactic Ultraviolet Survey (LEGUS). The multi-band observations span from the near-ultraviolet through the optical (F275W, F336W, F438W, F555W, and F814W). The apparent brightness of the echo at the time was ~21--22 mag in all of these bands. The echo appears circular, although less obviously as a ring, with an inhomogeneous surface brightness, in particular, a prominent enhanced brightness to the southeast. The SN itself was still detectable, particularly in the redder bands. We are able to model the light echo as the time-integrated SN light scattered off of diffuse interstellar dust in the SN environment. We have assumed that this dust is analogous to that in the Milky Way with R_V=3.1. The SN light curves that we consider also include models of the unobserved early burst of light from the SN shock breakout. Our analysis of the echo suggests that the distance from the SN to the scattering dust elements along the echo is ~45 pc. The implied visual extinction for the echo-producing dust is consistent with estimates made previously from the SN itself. Finally, our estimate of the SN brightness in F814W is fainter than that measured for the red supergiant star at the precise SN location in pre-SN images, possibly indicating that the star has vanished and confirming it as the likely SN progenitor.
We have obtained early-time photometry and spectroscopy of Supernova (SN) 2013df in NGC 4414. The SN is clearly of Type IIb, with notable similarities to SN 1993J. From its luminosity at secondary maximum light, it appears that less $^{56}$Ni ($lesss im 0.06 M_{odot}$) was synthesized in the SN 2013df explosion than was the case for the SNe IIb 1993J, 2008ax, and 2011dh. Based on a comparison of the light curves, the SN 2013df progenitor must have been more extended in radius prior to explosion than the progenitor of SN 1993J. The total extinction for SN 2013df is estimated to be $A_V=0.30$ mag. The metallicity at the SN location is likely to be solar. We have conducted Hubble Space Telescope (HST) Target of Opportunity observations of the SN with the Wide Field Camera 3, and from a precise comparison of these new observations to archival HST observations of the host galaxy obtained 14 years prior to explosion, we have identified the progenitor of SN 2013df to be a yellow supergiant, somewhat hotter than a red supergiant progenitor for a normal Type II-Plateau SN. From its observed spectral energy distribution, assuming that the light is dominated by one star, the progenitor had effective temperature $T_{rm eff} = 4250 pm 100$ K and a bolometric luminosity $L_{rm bol}=10^{4.94 pm 0.06} L_{odot}$. This leads to an effective radius $R_{rm eff} = 545 pm 65 R_{odot}$. The star likely had an initial mass in the range of 13 to 17 $M_{odot}$; however, if it was a member of an interacting binary system, detailed modeling of the system is required to estimate this mass more accurately. The progenitor star of SN 2013df appears to have been relatively similar to the progenitor of SN 1993J.
I have discovered a prominent light echo around the low-luminosity Type II-Plateau Supernova (SN) 2008bk in NGC 7793, seen in archival images obtained with the Wide Field Channel of the Advanced Camera for Surveys on-board the Hubble Space Telescope (HST). The echo is a partial ring, brighter to the north and east than to the south and west. The analysis of the echo I present suggests that it is due to the SN light pulse scattered by a sheet, or sheets, of dust located ~15 pc from the SN. The composition of the dust is assumed to be of standard Galactic diffuse interstellar grains. The visual extinction of the dust responsible for the echo is A_V ~ 0.05 mag, in addition to the extinction due to the Galactic foreground toward the host galaxy. That the SN experienced much less overall extinction implies that it is seen through a less dense portion of the interstellar medium in its environment. The late-time HST photometry of SN 2008bk also clearly demonstrates that the progenitor star has vanished.
The Type IIn supernovae (SNe IIn) have been found to be associated with significant amounts of dust. These core-collapse events are generally expected to be the final stage in the evolution of highly-massive stars, either while in an extreme red supe rgiant phase or during a luminous blue variable phase. Both evolutionary scenarios involve substantial pre-supernova mass loss. I have analyzed the SN IIn 1995N in MCG -02-38-017 (Arp 261), for which mid-infrared archival data obtained with the Spitzer Space Telescope in 2009 (~14.7 yr after explosion) and with the Wide-field Infrared Survey Explorer (WISE) in 2010 (~15.6--16.0 yr after explosion) reveal a luminous (~2e7 L_sun) source detected from 3.4 to 24 micron. These observations probe the circumstellar material, set up by pre-SN mass loss, around the progenitor star and indicate the presence of ~0.05--0.12 M_sun of pre-existing, cool dust at ~240 K. This is at least a factor ~10 lower than the dust mass required to be produced from SNe at high redshift, but the case of SN 1995N lends further evidence that highly massive stars could themselves be important sources of dust.
Reports of the death of the precursor of Supernova (SN) 1961V in NGC 1058 are exaggerated. Consideration of the best astrometric data shows that the star, known as Object 7, lies at the greatest proximity to SN 1961V and is the likely survivor of the SN impostor super-outburst. SN 1961V does not coincide with a neighboring radio source and is therefore not a radio SN. Additionally, the current properties of Object 7, based on data obtained with the Hubble Space Telescope, are consistent with it being a quiescent Luminous Blue Variable (LBV). Furthermore, post-explosion non-detections by the Spitzer Space Telescope do not necessarily and sufficiently rule out a surviving LBV. We therefore consider, based on the available evidence, that it is yet a bit premature to reclassify SN 1961V as a bona fide SN. The inevitable demise of this star, though, may not be too far off.
We have identified a luminous star at the position of supernova (SN) 2011dh/PTF11eon, in pre-SN archival, multi-band images of the nearby, nearly face-on galaxy Messier 51 (M51) obtained by the Hubble Space Telescope with the Advanced Camera for Surv eys. This identification has been confirmed, to the highest available astrometric precision, using a Keck-II adaptive-optics image. The available early-time spectra and photometry indicate that the SN is a stripped-envelope, core-collapse Type IIb, with a more compact progenitor (radius ~1e11 cm) than was the case for the well-studied SN IIb 1993J. We infer that the extinction to SN 2011dh and its progenitor arises from a low Galactic foreground contribution, and that the SN environment is of roughly solar metallicity. The detected object has absolute magnitude M_V^0 ~ -7.7 and effective temperature ~6000 K. The stars radius, ~1e13 cm, is more extended than what has been inferred for the SN progenitor. We speculate that the detected star is either an unrelated star very near the position of the actual progenitor, or, more likely, the progenitors companion in a mass-transfer binary system. The position of the detected star in a Hertzsprung-Russell diagram is consistent with an initial mass of 17--19 Msun. The light of this star could easily conceal, even in the ultraviolet, the presence of a stripped, compact, very hot (~1e5 K), nitrogen-rich Wolf-Rayet star progenitor.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا