ترغب بنشر مسار تعليمي؟ اضغط هنا

The inability of systems of interacting objects to satisfy all constraints simultaneously leads to frustration. A particularly important consequence of frustration is the ability to access certain protected parts of a system without disturbing the ot hers. For magnets such protectorates have been inferred from theory and from neutron scattering, but their practical consequences have been unclear. We show that a magnetic analogue of optical hole-burning can address these protected spin clusters in a well-known, geometrically frustrated Heisenberg system, gadolinium gallium garnet. Our measurements additionally provide a resolution of a famous discrepancy between the bulk magnetometry and neutron diffraction results for this magnetic compound.
Electric field enhanced electron spin coherence is characterized using time-resolved Faraday rotation spectroscopy in n-type ZnO epilayers grown by molecular beam epitaxy. An in-plane dc electric field E almost doubles the transverse spin lifetime at 20 K, without affecting the effective g-factor. This effect persists till high temperatures, but decreases with increasing carrier concentration. Comparisons of the variations in the spin lifetime, the carrier recombination lifetime and photoluminescence lifetimes indicate that the applied E enhances the radiative recombination rate. All observed effects are independent of crystal directionality and are performed at low magnetic fields (B < 0.2 T).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا