ﻻ يوجد ملخص باللغة العربية
The inability of systems of interacting objects to satisfy all constraints simultaneously leads to frustration. A particularly important consequence of frustration is the ability to access certain protected parts of a system without disturbing the others. For magnets such protectorates have been inferred from theory and from neutron scattering, but their practical consequences have been unclear. We show that a magnetic analogue of optical hole-burning can address these protected spin clusters in a well-known, geometrically frustrated Heisenberg system, gadolinium gallium garnet. Our measurements additionally provide a resolution of a famous discrepancy between the bulk magnetometry and neutron diffraction results for this magnetic compound.
We consider magnon excitations in the spin-glass phase of geometrically frustrated antiferromagnets with weak exchange disorder, focussing on the nearest-neighbour pyrochlore-lattice Heisenberg model at large spin. The low-energy degrees of freedom i
We study the low energy physics of a Kondo chain where electrons from a one-dimensional band interact with magnetic moments via an anisotropic exchange interaction. It is demonstrated that the anisotropy gives rise to two different phases which are s
We propose and analyze two distinct routes toward realizing interacting symmetry-protected topological (SPT) phases via periodic driving. First, we demonstrate that a driven transverse-field Ising model can be used to engineer complex interactions wh
We show theoretically that spin and orbital degrees of freedom in the pyrochlore oxide Y2Mo2O7, which is free of quenched disorder, can exhibit a simultaneous glass transition, working as dynamical randomness to each other. The interplay of spins and
Quantum states induced by single-atomic-impurities are the current frontier of material and information science. Recently the spin-orbit coupled correlated kagome magnets are emerging as a new class of topological quantum materials, although the effe