ترغب بنشر مسار تعليمي؟ اضغط هنا

The recent observation of the dynamical Casimir effect in a modulated superconducting waveguide, coronating thirty years of world-wide research, empowered the quantum technology community with a powerful tool to create entangled photons on-chip. In t his work we show how, going beyond the single waveguide paradigm using a scalable array, it is possible to create multipartite nonclassical states, with the possibility to control the long-range quantum correlations of the emitted photons. In particular, our finite-temperature theory shows how maximally entangled $NOON$ states can be engineered in a realistic setup. The results here presented open the way to new kinds of quantum fluids of light, arising from modulated vacuum fluctuations in linear systems.
We study the all-optical time-control of the strong coupling between a single cascade three-level quantum emitter and a microcavity. We find that only specific arrival-times of the control pulses succeed in switching-off the Rabi oscillations. Depend ing on the arrival times of control pulses, a variety of exotic non-adiabatic cavity quantum electrodynamics effects can be observed. We show that only control pulses with specific arrival times are able to suddenly switch-off and -on first-order coherence of cavity photons, without affecting their strong coupling population dynamics. Such behavior may be understood as a manifestation of quantum complementarity.
e study theoretically, the photoluminescence properties of a single quantum dot in a microcavity under incoherent excitation. We propose a microscopic quantum statistical approach providing a Lindblad (thus completely positive) description of pumping and decay mechanisms of the quantum dot and of the cavity mode. Our analytical results show that strong coupling (SC) and linewidths are largely independent on the pumping intensity (until saturation effects come into play), in contrast to previous theoretical findings. We shall show the reliable predicting character of our theoretical framework in the analysis of various recent experiments.
The Dirac equation provides a description of spin 1/2 particles, consistent with both the principles of quantum mechanics and of special relativity. Often its presentation to students is based on mathematical propositions that may hide the physical m eaning of its contents. Here we show that Dirac spinors provide the quantum description of two unit classical vectors: one whose components are the speed of an elementary particle and the rate of change of its proper time and a second vector which fixes the velocity direction. In this context both the spin degree of freedom and antiparticles can be understood from the rotation symmetry of these unit vectors. Within this approach the Dirac Lagrangian acquires a direct physical meaning as the quantum operator describing the total time-derivative.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا