ترغب بنشر مسار تعليمي؟ اضغط هنا

Van der Waals (vdW) heterojunctions composed of 2-dimensional (2D) layered materials are emerging as a solid-state materials family that exhibit novel physics phenomena that can power high performance electronic and photonic applications. Here, we pr esent the first demonstration of an important building block in vdW solids: room temperature (RT) Esaki tunnel diodes. The Esaki diodes were realized in vdW heterostructures made of black phosphorus (BP) and tin diselenide (SnSe2), two layered semiconductors that possess a broken-gap energy band offset. The presence of a thin insulating barrier between BP and SnSe2 enabled the observation of a prominent negative differential resistance (NDR) region in the forward-bias current-voltage characteristics, with a peak to valley ratio of 1.8 at 300 K and 2.8 at 80 K. A weak temperature dependence of the NDR indicates electron tunneling being the dominant transport mechanism, and a theoretical model shows excellent agreement with the experimental results. Furthermore, the broken-gap band alignment is confirmed by the junction photoresponse and the phosphorus double planes in a single layer of BP are resolved in transmission electron microscopy (TEM) for the first time. Our results represent a significant advance in the fundamental understanding of vdW heterojunctions, and widen the potential applications base of 2D layered materials.
Atomically thin two-dimensional molybdenum disulfide (MoS2) sheets have attracted much attention due to their potential for future electronic applications. They not only present the best planar electrostatic control in a device, but also lend themsel ves readily for dielectric engineering. In this work, we experimentally investigated the dielectric effect on the Raman and photoluminescence (PL) spectra of monolayer MoS2 by comparing samples with and without HfO2 on top by atomic layer deposition (ALD). Based on considerations of the thermal, doping, strain and dielectric screening influences, it is found that the red shift in the Raman spectrum largely stems from modulation doping of MoS2 by the ALD HfO2, and the red shift in the PL spectrum is most likely due to strain imparted on MoS2 by HfO2. Our work also suggests that due to the intricate dependence of band structure of monolayer MoS2 on strain, one must be cautious to interpret its Raman and PL spectroscopy.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا