ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological aspects of superconductivity in quantum spin-Hall systems (QSHSs) such as thin layers of three-dimensional topological insulators (3D Tis) or two-dimensional Tis are in the focus of current research. We examine hybrid QSHS/superconductor structures in an external magnetic field and predict a gapless superconducting state with protected edge modes. It originates entirely from the orbital magnetic-field effect caused by the locking of the electron spin to the momentum of the superconducting condensate flow. We show that such spin-momentum locking can generate a giant orbital g-factor of order of several hundreds, allowing one to achieve significant spin polarization in the QSHS in the fields well below the critical field of the superconducting material. We propose a three-terminal setup in which the spin-polarized edge superconductivity can be probed by Andreev reflection, leading to unusual transport characteristics: a non-monotonic excess current and a zero-bias conductance splitting in the absence of the Zeeman interaction.
Using a generalized wave matching method we solve the full scattering problem for quantum spin Hall insulator (QSHI) - superconductor (SC) - QSHI junctions. We find that for systems narrow enough so that the bulk states in the SC part couple both edg es, the crossed Andreev reflection (CAR) is significant and the electron cotunneling (T) and CAR become spatially separated. We study the effectiveness of this separation as a function of the system geometry and the level of doping in the SC. Moreover, we show that the spatial separation of both effects allows for an all-electrical measurement of CAR and T separately in a 5-terminal setup or by using the spin selection of the quantum spin Hall effect in an H-bar structure.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا