ﻻ يوجد ملخص باللغة العربية
Topological aspects of superconductivity in quantum spin-Hall systems (QSHSs) such as thin layers of three-dimensional topological insulators (3D Tis) or two-dimensional Tis are in the focus of current research. We examine hybrid QSHS/superconductor structures in an external magnetic field and predict a gapless superconducting state with protected edge modes. It originates entirely from the orbital magnetic-field effect caused by the locking of the electron spin to the momentum of the superconducting condensate flow. We show that such spin-momentum locking can generate a giant orbital g-factor of order of several hundreds, allowing one to achieve significant spin polarization in the QSHS in the fields well below the critical field of the superconducting material. We propose a three-terminal setup in which the spin-polarized edge superconductivity can be probed by Andreev reflection, leading to unusual transport characteristics: a non-monotonic excess current and a zero-bias conductance splitting in the absence of the Zeeman interaction.
We study the influences of antidot-induced bound states on transport properties of two- dimensional quantum spin Hall insulators. The bound statesare found able to induce quantum percolation in the originally insulating bulk. At some critical antidot
The fabrication of bismuthene on top of SiC paved the way for substrate engineering of room temperature quantum spin Hall insulators made of group V atoms. We perform large-scale quantum transport calculations in these 2d materials to analyse the ric
Emerging theoretical concepts for quantum technologies have driven a continuous search for structures where a quantum state, such as spin, can be manipulated efficiently. Central to many concepts is the ability to control a system by electric and mag
We study numerically the charge conductance distributions of disordered quantum spin-Hall (QSH) systems using a quantum network model. We have found that the conductance distribution at the metal-QSH insulator transition is clearly different from tha
We show theoretically that both intrinsic spin Hall effect (SHE) and orbital Hall effect (OHE) can arise in centrosymmetric systems through momentum-space orbital texture, which is ubiquitous even in centrosymmetric systems unlike spin texture. OHE o