ترغب بنشر مسار تعليمي؟ اضغط هنا

414 - Robin L. Shelton , Kyujin Kwak , 2012
With the goal of understanding why X-rays have been reported near some high velocity clouds, we perform detailed 3 dimensional hydrodynamic and magnetohydrodynamic simulations of clouds interacting with environmental gas like that in the Galaxys thic k disk/halo or the Magellanic Stream. We examine 2 scenarios. In the first, clouds travel fast enough to shock-heat warm environmental gas. In this scenario, the X-ray productivity depends strongly on the speed of the cloud and the radiative cooling rate. In order to shock-heat environmental gas to temperatures of > or = 10^6 K, cloud speeds of > or = 300 km/s are required. If cooling is quenched, then the shock-heated ambient gas is X-ray emissive, producing bright X-rays in the 1/4 keV band and some X-rays in the 3/4 keV band due to O VII and other ions. If, in contrast, the radiative cooling rate is similar to that of collisional ionizational equilibrium plasma with solar abundances, then the shocked gas is only mildly bright and for only about 1 Myr. The predicted count rates for the non-radiative case are bright enough to explain the count rate observed with XMM-Newton toward a Magellanic Stream cloud and some enhancement in the ROSAT 1/4 keV count rate toward Complex C, while the predicted count rates for the fully radiative case are not. In the second scenario, the clouds travel through and mix with hot ambient gas. The mixed zone can contain hot gas, but the hot portion of the mixed gas is not as bright as those from the shock-heating scenario.
220 - R. L. Shelton , 2010
This paper examines the ultraviolet and X-ray photons generated by hot gas in the Galactic thick disk or halo in the Draco region of the northern hemisphere. Our analysis uses the intensities from four ions, C IV, O VI, O VII, and O VIII, sampling te mperatures of ~100,000 to ~3,000,000 K. We measured the O VI, O VII and O VIII intensities from FUSE and XMM-Newton data and subtracted off the local contributions in order to deduce the thick disk/halo contributions. These were supplemented with published C IV intensity and O VI column density measurements. Our estimate of the thermal pressure in the O VI-rich thick disk/halo gas, p_{th}/k = 6500^{+2500}_{-2600} K cm^{-3}, suggests that the thick disk/halo is more highly pressurized than would be expected from theoretical analyses. The ratios of C IV to O VI to O VII to O VIII, intensities were compared with those predicted by theoretical models. Gas which was heated to 3,000,000 K then allowed to cool radiatively cannot produce enough C IV or O VI-generated photons per O VII or O VIII-generated photon. Producing enough C IV and O VI emission requires heating additional gas to 100,000 < T < 1,000,000 K. However, shock heating, which provides heating across this temperature range, overproduces O VI relative to the others. Obtaining the observed mix may require a combination of several processes, including some amount of shock heating, heat conduction, and mixing, as well as radiative cooling of very hot gas.
221 - Robin L. Shelton 2008
This report summarizes the discussions in the Session 1 and Session 3 groups which met to discuss the questions: ``What Physical Processes Drive the Multiphase Interstellar Medium in the Local Bubble?, and ``What are the Energy and Pressure Balances in the Local Bubble? Most of our understanding of the Local Bubble has come from soft X-ray observations, but recent appreciation of the importance of solar wind charge exchange (SWCX) reactions has shown that the heliosphere produces some fraction of the soft X-rays that were previously ascribed to the Local Bubble. Some astronomers suggest that the SWCX X-rays rather than Local Bubble emission could explain most of the locally produced X-rays. Our discussions, therefore, also included a debate concerning the Local Bubbles existence.
100 - Robin L. Shelton 2008
The hot Local Bubble surrounding the solar neighborhood has been primarily studied through observations of its soft X-ray emission. The measurements were obtained by attributing all of the observed local soft X-rays to the bubble. However, mounting e vidence shows that the heliosphere also produces diffuse X-rays. The source is solar wind ions that have received an electron from another atom. The presence of this alternate explanation for locally produced diffuse X-rays calls into question the existence and character of the Local Bubble. This article addresses these questions. It reviews the literature on solar wind charge exchange (SWCX) X-ray production, finding that SWCX accounts for roughly half of the observed local 1/4 keV X-rays found at low latitudes. This article also makes predictions for the heliospheric O VI column density and intensity, finding them to be smaller than the observational error bars. Evidence for the continued belief that the Local Bubble contains hot gas includes the remaining local 1/4 keV intensity, the observed local O VI column density, and the need to fill the local region with some sort of plasma. If the true Local Bubble is half as bright as previously thought, then its electron density and thermal pressure are 1/square-root(2) as great as previously thought, and its energy requirements and emission measure are 1/2 as great as previously thought. These adjustments can be accommodated easily, and, in fact, bring the Local Bubbles pressure more in line with that of the adjacent material. Suggestions for future work are made.
In order to determine the circumstances under which isolated SNRs are capable of rising into and enriching the thick disk and galactic halo, simulations of supernova remnants are performed with the FLASH magnetohydrodynamic code. We performed simulat ions in which the interstellar magnetic field is parallel to or perpendicular to the galactic plane as well as a simulation without a magnetic field. The ambient gas density distribution and gravitational potential are based on observations of our galaxy. We evolve the remnants to ages of roughly 10,000,000 years. For our simulation without a magnetic field, we compare the evolution of the hot bubbles velocity with the velocity evolution calculated from the buoyant and drag accelerations. We found surprisingly small vertical velocities of the hot gas, from which we estimated the drag coefficient to be ten for the non-magnetic simulation. Although we found little buoyant motion of the hot gas during the remnants lifetime, we found rapid vertical motion of the associated cool dense gas near the end of the remnants life. This motion deformed the remnant into a mushroom cloud structure similar to those found in previous simulations. The simulation in which we have a 4 micro-Gauss magnetic field parallel to the galactic mid-plane shows a dramatically elongated bubble parallel to the magnetic field. The magnetic field pins the supernova remnant preventing it from rising. In the simulation with the 4 micro-Gauss magnetic field perpendicular to the midplane the hot bubble rises more, indicating that having the magnetic field in the same direction as the gravitational force enhances the rise of the bubble.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا