ترغب بنشر مسار تعليمي؟ اضغط هنا

Hot Gas in the Galactic Thick Disk and Halo Near the Draco Cloud

221   0   0.0 ( 0 )
 نشر من قبل Robin L. Shelton
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف R. L. Shelton -




اسأل ChatGPT حول البحث

This paper examines the ultraviolet and X-ray photons generated by hot gas in the Galactic thick disk or halo in the Draco region of the northern hemisphere. Our analysis uses the intensities from four ions, C IV, O VI, O VII, and O VIII, sampling temperatures of ~100,000 to ~3,000,000 K. We measured the O VI, O VII and O VIII intensities from FUSE and XMM-Newton data and subtracted off the local contributions in order to deduce the thick disk/halo contributions. These were supplemented with published C IV intensity and O VI column density measurements. Our estimate of the thermal pressure in the O VI-rich thick disk/halo gas, p_{th}/k = 6500^{+2500}_{-2600} K cm^{-3}, suggests that the thick disk/halo is more highly pressurized than would be expected from theoretical analyses. The ratios of C IV to O VI to O VII to O VIII, intensities were compared with those predicted by theoretical models. Gas which was heated to 3,000,000 K then allowed to cool radiatively cannot produce enough C IV or O VI-generated photons per O VII or O VIII-generated photon. Producing enough C IV and O VI emission requires heating additional gas to 100,000 < T < 1,000,000 K. However, shock heating, which provides heating across this temperature range, overproduces O VI relative to the others. Obtaining the observed mix may require a combination of several processes, including some amount of shock heating, heat conduction, and mixing, as well as radiative cooling of very hot gas.

قيم البحث

اقرأ أيضاً

110 - Thomas Bensby 2013
Thick disks appear to be common in external large spiral galaxies and our own Milky Way also hosts one. The existence of a thick disk is possibly directly linked to the formation history of the host galaxy and if its properties is known it can constr ain models of galaxy formation and help us to better understand galaxy formation and evolution. This brief review attempts to highlight some of the characteristics of the Galactic thick disk and how it relates to other stellar populations such as the thin disk and the Galactic bulge. Focus has been put on results from high-resolution spectroscopic data obtained during the last 10 to 15 years.
[abridged] Beryllium is a pure product of cosmic ray spallation. This implies a relatively simple evolution in time of the beryllium abundance and suggests its use as a time-like observable. We study the evolution of Be in the early Galaxy and its de pendence on kinematic and orbital parameters. We investigate the formation of the halo and the thick disk of the Galaxy and the use of Be as a cosmochronometer. Beryllium abundances are determined from high resolution, high signal to noise UVES spectra with spectrum synthesis in the largest sample of halo and thick disk stars analyzed to date. We present our observational results in various diagrams. 1) In a log(Be/H) vs [Fe/H] diagram we find a marginal statistical detection of a real scatter, above what expected from measurement errors, with a larger scatter among halo stars. The detection of the scatter is further supported by the existence of pairs of stars with identical atmospheric parameters and different Be abundances. 2) In an log(Be/H) vs [alpha/Fe] diagram, the halo stars separate into two components; one is consistent with predictions of evolutionary models, while the other has too high alpha and Be abundances and is chemically indistinguishable from thick disk stars. This suggests that the halo is not a single uniform population where a clear age-metallicity relation can be defined. 3) In diagrams of Rmin vs [alpha/Fe] and log(Be/H) the thick disk stars show a possible decrease of [alpha/Fe] with Rmin, whereas no dependence of Be with Rmin is seen. This anticorrelation suggests that the star formation rate was lower in the outer regions of the thick disc, pointing towards an inside-out formation. The lack of correlation for Be indicates that it is insensitive to the local conditions of star formation.
We test the X-ray emission predictions of galactic fountain models against XMM-Newton measurements of the emission from the Milky Ways hot halo. These measurements are from 110 sight lines, spanning the full range of Galactic longitudes. We find that a magnetohydrodynamical simulation of a supernova-driven interstellar medium, which features a flow of hot gas from the disk to the halo, reproduces the temperature but significantly underpredicts the 0.5-2.0 keV surface brightness of the halo (by two orders of magnitude, if we compare the median predicted and observed values). This is true f
212 - David B. Henley 2010
We compare the predictions of three physical models for the origin of the hot halo gas with the observed halo X-ray emission, derived from 26 high-latitude XMM-Newton observations of the soft X-ray background between $l=120degr$ and $l=240degr$. Thes e observations were chosen from a much larger set of observations as they are expected to be the least contaminated by solar wind charge exchange emission. We characterize the halo emission in the XMM-Newton band with a single-temperature plasma model. We find that the observed halo temperature is fairly constant across the sky (~1.8e6-2.3e6 K), whereas the halo emission measure varies by an order of magnitude (~0.0005-0.006 cm^-6 pc). When we compare our observations with the model predictions, we find that most of the hot gas observed with XMM-Newton does not reside in isolated extraplanar supernova remnants -- this model predicts emission an order of magnitude too faint. A model of a supernova-driven interstellar medium, including the flow of hot gas from the disk into the halo in a galactic fountain, gives good agreement with the observed 0.4-2.0 keV surface brightness. This model overpredicts the halo X-ray temperature by a factor of ~2, but there are a several possible explanations for this discrepancy. We therefore conclude that a major (possibly dominant) contributor to the halo X-ray emission observed with XMM-Newton is a fountain of hot gas driven into the halo by disk supernovae. However, we cannot rule out the possibility that the extended hot halo of accreted material predicted by disk galaxy formation models also contributes to the emission.
We compared the number of faint stars detected in deep survey fields with the current stellar distribution model of the Galaxy and found that the detected number in the H band is significantly smaller than the predicted number. This indicates that M- dwarfs, the major component, are fewer in the halo and the thick disk. We used archived data of several surveys in both the north and south field of GOODS (Great Observatories Origins Deep Survey), MODS in GOODS-N, and ERS and CANDELS in GOODS-S. The number density of M-dwarfs in the halo has to be 20+/-13% relative to that in the solar vicinity, in order for the detected number of stars fainter than 20.5 mag in the H band to match with the predicted value from the model. In the thick disk, the number density of M-dwarfs must be reduced (52+/-13%) or the scale height must be decreased (~600 pc). Alternatively, overall fractions of the halo and thick disks can be significantly reduced to achieve the same effect, because our sample mainly consists of faint M-dwarfs. Our results imply that the M-dwarf population in regions distant from the Galactic plane is significantly smaller than previously thought. We then discussed the implications this has on the suitability of the model predictions for the prediction of non-companion faint stars in direct imaging extrasolar planet surveys by using the best-fit number densities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا