ترغب بنشر مسار تعليمي؟ اضغط هنا

In a companion paper we have presented many products derived from the application of the spectral synthesis code STARLIGHT to datacubes from the CALIFA survey, including 2D maps of stellar population properties and 1D averages in the temporal and spa tial dimensions. Here we evaluate the uncertainties in these products. Uncertainties due to noise and spectral shape calibration errors and to the synthesis method are investigated by means of a suite of simulations based on 1638 CALIFA spectra for NGC 2916, with perturbations amplitudes gauged in terms of the expected errors. A separate study was conducted to assess uncertainties related to the choice of evolutionary synthesis models. We compare results obtained with the Bruzual & Charlot models, a preliminary update of them, and a combination of spectra derived from the Granada and MILES models. About 100k CALIFA spectra are used in this comparison. Noise and shape-related errors at the level expected for CALIFA propagate to 0.10-0.15 dex uncertainties in stellar masses, mean ages and metallicities. Uncertainties in A_V increase from 0.06 mag in the case of random noise to 0.16 mag for shape errors. Higher order products such as SFHs are more uncertain, but still relatively stable. Due to the large number statistics of datacubes, spatial averaging reduces uncertainties while preserving information on the history and structure of stellar populations. Radial profiles of global properties, as well as SFHs averaged over different regions are much more stable than for individual spaxels. Uncertainties related to the choice of base models are larger than those associated with data and method. Differences in mean age, mass and metallicity are ~ 0.15 to 0.25 dex, and 0.1 mag in A_V. Spectral residuals are ~ 1% on average, but with systematic features of up to 4%. The origin of these features is discussed. (Abridged)
Fossil record methods based on spectral synthesis techniques have matured over the past decade, and their application to integrated galaxy spectra fostered substantial advances on the understanding of galaxies and their evolution. Yet, because of the lack of spatial resolution, these studies are limited to a global view, providing no information about the internal physics of galaxies. Motivated by the CALIFA survey, which is gathering Integral Field Spectroscopy over the full optical extent of 600 galaxies, we have developed an end-to-end pipeline which: (i) partitions the observed data cube into Voronoi zones in order to, when necessary and taking due account of correlated errors, increase the S/N, (ii) extracts spectra, including propagated errors and bad-pixel flags, (iii) feeds the spectra into the STARLIGHT spectral synthesis code, (iv) packs the results for all galaxy zones into a single file, (v) performs a series of post-processing operations, including zone-to-pixel image reconstruction and unpacking the spectral and stellar population properties into multi-dimensional time, metallicity, and spatial coordinates. This paper provides an illustrated description of this whole pipeline and its products. Using data for the nearby spiral NGC 2916 as a show case, we go through each of the steps involved, presenting ways of visualizing and analyzing this manifold. These include 2D maps of properties such as the v-field, stellar extinction, mean ages and metallicities, mass surface densities, star formation rates on different time scales and normalized in different ways, 1D averages in the temporal and spatial dimensions, projections of the stellar light and mass growth (x,y,t) cubes onto radius-age diagrams, etc. The results illustrate the richness of the combination of IFS data with spectral synthesis, providing a glimpse of what is to come from CALIFA and future surveys. (Abridged)
A numerous population of weak line galaxies (WLGs) is often left out of statistical studies on emission line galaxies (ELGs) due to the absence of an adequate classification scheme, since classical diagnostic diagrams, like [OIII]/Hb vs [NII]/Ha (the BPT diagram), require the measurement of at least 4 emission lines. This paper aims to remedy this situation by transposing the usual divisory lines between Star Forming (SF) and AGN hosts, and between Seyferts and LINERs to diagrams that are more economical in terms of line quality requirements. By doing this, we rescue from the classification limbo a substantial number of sources and modify the global census of ELGs. More specifically: (1) We use the SDSS DR7 to constitute a suitable sample of 280k ELGs, 1/3 of which are WLGs. (2) Galaxies with strong emission lines are classified using the widely applied criteria of Kewley et al (2001), Kauffmann et al (2003), Stasinska et al (2006) and Kewley et al (2006). (3) We transpose these classification schemes to alternative diagrams keeping [NII]/Ha as a horizontal axis, but replacing Hb by a stronger line (Ha or [OII]), or substituting [OIII]/Hb ratio with the equivalent width of Ha. Optimized equations for the transposed divisory lines are provided. (4) We show that nothing significant is lost in the translation, but that the new diagrams allow one to classify up to 50% more ELGs. (5) Introducing WLGs in the census of galaxies in the local Universe increases the proportion of metal-rich SF galaxies and especially LINERs. (abridged)
Massive spectroscopic surveys like the SDSS have revolutionized the way we study AGN and their relations to the galaxies they live in. A first step in any such study is to define samples of different types of AGN on the basis of emission line ratios. This deceivingly simple step involves decisions on which classification scheme to use and data quality censorship. Galaxies with weak emission lines are often left aside or dealt with separately because one cannot fully classify them onto the standard Star-Forming, Seyfert of LINER categories. This contribution summarizes alternative classification schemes which include this very numerous population. We then study how star-formation histories and physical properties of the hosts vary from class to class, and present compelling evidence that the emission lines in the majority of LINER-like systems in the SDSS are not powered by black-hole accretion. The data are fully consistent with them being galaxies whose old stars provide all the ionizing power needed to explain their line ratios and luminosities. Such retired galaxies deserve a place in the emission line taxonomy.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا