ترغب بنشر مسار تعليمي؟ اضغط هنا

Resolving galaxies in time and space: I: Applying STARLIGHT to CALIFA data cubes

173   0   0.0 ( 0 )
 نشر من قبل Roberto Cid Fernandes
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Fossil record methods based on spectral synthesis techniques have matured over the past decade, and their application to integrated galaxy spectra fostered substantial advances on the understanding of galaxies and their evolution. Yet, because of the lack of spatial resolution, these studies are limited to a global view, providing no information about the internal physics of galaxies. Motivated by the CALIFA survey, which is gathering Integral Field Spectroscopy over the full optical extent of 600 galaxies, we have developed an end-to-end pipeline which: (i) partitions the observed data cube into Voronoi zones in order to, when necessary and taking due account of correlated errors, increase the S/N, (ii) extracts spectra, including propagated errors and bad-pixel flags, (iii) feeds the spectra into the STARLIGHT spectral synthesis code, (iv) packs the results for all galaxy zones into a single file, (v) performs a series of post-processing operations, including zone-to-pixel image reconstruction and unpacking the spectral and stellar population properties into multi-dimensional time, metallicity, and spatial coordinates. This paper provides an illustrated description of this whole pipeline and its products. Using data for the nearby spiral NGC 2916 as a show case, we go through each of the steps involved, presenting ways of visualizing and analyzing this manifold. These include 2D maps of properties such as the v-field, stellar extinction, mean ages and metallicities, mass surface densities, star formation rates on different time scales and normalized in different ways, 1D averages in the temporal and spatial dimensions, projections of the stellar light and mass growth (x,y,t) cubes onto radius-age diagrams, etc. The results illustrate the richness of the combination of IFS data with spectral synthesis, providing a glimpse of what is to come from CALIFA and future surveys. (Abridged)



قيم البحث

اقرأ أيضاً

In a companion paper we have presented many products derived from the application of the spectral synthesis code STARLIGHT to datacubes from the CALIFA survey, including 2D maps of stellar population properties and 1D averages in the temporal and spa tial dimensions. Here we evaluate the uncertainties in these products. Uncertainties due to noise and spectral shape calibration errors and to the synthesis method are investigated by means of a suite of simulations based on 1638 CALIFA spectra for NGC 2916, with perturbations amplitudes gauged in terms of the expected errors. A separate study was conducted to assess uncertainties related to the choice of evolutionary synthesis models. We compare results obtained with the Bruzual & Charlot models, a preliminary update of them, and a combination of spectra derived from the Granada and MILES models. About 100k CALIFA spectra are used in this comparison. Noise and shape-related errors at the level expected for CALIFA propagate to 0.10-0.15 dex uncertainties in stellar masses, mean ages and metallicities. Uncertainties in A_V increase from 0.06 mag in the case of random noise to 0.16 mag for shape errors. Higher order products such as SFHs are more uncertain, but still relatively stable. Due to the large number statistics of datacubes, spatial averaging reduces uncertainties while preserving information on the history and structure of stellar populations. Radial profiles of global properties, as well as SFHs averaged over different regions are much more stable than for individual spaxels. Uncertainties related to the choice of base models are larger than those associated with data and method. Differences in mean age, mass and metallicity are ~ 0.15 to 0.25 dex, and 0.1 mag in A_V. Spectral residuals are ~ 1% on average, but with systematic features of up to 4%. The origin of these features is discussed. (Abridged)
110 - Mankei Tsang 2019
The wave-particle duality of light introduces two fundamental problems to imaging, namely, the diffraction limit and the photon shot noise. Quantum information theory can tackle them both in one holistic formalism: model the light as a quantum object , consider any quantum measurement, and pick the one that gives the best statistics. While Helstrom pioneered the theory half a century ago and first applied it to incoherent imaging, it was not until recently that the approach offered a genuine surprise on the age-old topic by predicting a new class of superior imaging methods. For the resolution of two sub-Rayleigh sources, the new methods have been shown theoretically and experimentally to outperform direct imaging and approach the true quantum limits. Recent efforts to generalize the theory for an arbitrary number of sources suggest that, despite the existence of harsh quantum limits, the quantum-inspired methods can still offer significant improvements over direct imaging for subdiffraction objects, potentially benefiting many applications in astronomy as well as fluorescence microscopy.
We characterize the dust in NGC628 and NGC6946, two nearby spiral galaxies in the KINGFISH sample. With data from 3.6um to 500um, dust models are strongly constrained. Using the Draine & Li (2007) dust model, (amorphous silicate and carbonaceous grai ns), for each pixel in each galaxy we estimate (1) dust mass surface density, (2) dust mass fraction contributed by polycyclic aromatic hydrocarbons (PAH)s, (3) distribution of starlight intensities heating the dust, (4) total infrared (IR) luminosity emitted by the dust, and (5) IR luminosity originating in regions with high starlight intensity. We obtain maps for the dust properties, which trace the spiral structure of the galaxies. The dust models successfully reproduce the observed global and resolved spectral energy distributions (SEDs). The overall dust/H mass ratio is estimated to be 0.0082+/-0.0017 for NGC628, and 0.0063+/-0.0009 for NGC6946, consistent with what is expected for galaxies of near-solar metallicity. Our derived dust masses are larger (by up to a factor 3) than estimates based on single-temperature modified blackbody fits. We show that the SED fits are significantly improved if the starlight intensity distribution includes a (single intensity) delta function component. We find no evidence for significant masses of cold dust T<12K. Discrepancies between PACS and MIPS photometry in both low and high surface brightness areas result in large uncertainties when the modeling is done at PACS resolutions, in which case SPIRE, MIPS70 and MIPS160 data cannot be used. We recommend against attempting to model dust at the angular resolution of PACS.
Reflected starlight measurements will open a new path in the characterization of directly imaged exoplanets. However, we still lack a population study of known targets amenable to this technique. Here, we investigate which of the about 4300 exoplanet s confirmed to date are accessible to the Roman Space Telescopes coronagraph (CGI) in reflected starlight at reference wavelengths $lambda$=575, 730 and 825 nm. We carry out a population study and also address the prospects for phase-curve measurements. We used the NASA Exoplanet Archive as a reference for planet and star properties, and explored the impact of their uncertainties on the exoplanets detectability by applying statistical arguments. We define a planet as Roman-accessible on the basis of the instrument inner and outer working angles and its minimum planet-to-star constrast (IWA, OWA, $C_{min}$). We adopt for these technical specifications three plausible configurations labeled as pessimistic, intermediate and optimistic. Our key outputs for each exoplanet are its probability of being Roman-accessible ($P_{access}$), the range of observable phase angles, the evolution of its equilibrium temperature, the number of days per orbit that it is accessible and its transit probability. In the optimistic scenario, we find 26 Roman-accessible exoplanets with $P_{access}$>25% and host stars brighter than $V$=7 mag. This population is biased towards planets more massive than Jupiter but also includes the super-Earths tau Cet e and f which orbit near their stars habitable zone. A total of 13 planets are part of multiplanet systems, 3 of them with known transiting companions, offering opportunities for contemporaneous characterization. The intermediate and pessimistic scenarios yield 10 and 3 Roman-accessible exoplanets, respectively. We find that inclination estimates (e.g. with astrometry) are key for refining the detectability prospects.
Over 4,000 exoplanets have been identified and thousands of candidates are to be confirmed. The relations between the characteristics of these planetary systems and the kinematics, Galactic components, and ages of their host stars have yet to be well explored. Aiming to addressing these questions, we conduct a research project, dubbed as PAST (Planets Across Space and Time). To do this, one of the key steps is to accurately characterize the planet host stars. In this paper, the Paper I of the PAST series, we revisit the kinematic method for classification of Galactic components and extend the applicable range of velocity ellipsoid from about 100 pc to 1, 500 pc from the sun in order to cover most known planet hosts. Furthermore, we revisit the Age-Velocity dispersion Relation (AVR), which allows us to derive kinematic age with a typical uncertainty of 10-20% for an ensemble of stars. Applying the above revised methods, we present a catalog of kinematic properties (i.e. Galactic positions, velocities, the relative membership probabilities among the thin disk, thick disk, Hercules stream, and the halo) as well as other basic stellar parameters for 2,174 host stars of 2,872 planets by combining data from Gaia, LAMOST, APOGEE, RAVE, and the NASA exoplanet archive. The revised kinematic method and AVR as well as the stellar catalog of kinematic properties and ages lay foundation for future studies on exoplanets from two dimensions of space and time in the Galactic context.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا