ترغب بنشر مسار تعليمي؟ اضغط هنا

Inelastic neutron scattering measurements of paramagnetic SrCo$_{2}$As$_{2}$ at T=5 K reveal antiferromagnetic (AFM) spin fluctuations that are peaked at a wavevector of $textbf{Q}_{mathrm{AFM}}=(1/2,1/2,1)$ and possess a large energy scale. These st ripe spin fluctuations are similar to those found in $A$Fe$_{2}$As$_{2}$ compounds, where spin-density wave AFM is driven by Fermi surface nesting between electron and hole pockets separated by $textbf{Q}_{mathrm{AFM}}$. SrCo$_{2}$As$_{2}$ has a more complex Fermi surface and band structure calculations indicate a potential instability towards either a ferromagnetic or stripe AFM ground state. The results suggest that stripe AFM magnetism is a general feature of both iron and cobalt-based arsenides and the search for spin fluctuation-induced unconventional superconductivity should be expanded to include cobalt-based compounds.
Inelastic neutron scattering measurements on the low energy spin waves in CaFe2As2 show that the magnetic exchange interactions in the Fe layers are exceptionally large and similar to the cuprates. However, the exchange between layers is ~10% of the coupling in the layers and the magnetism is more appropriately categorized as anisotropic three-dimensional, in contrast to the two-dimensional cuprates. Band structure calculations of the spin dynamics and magnetic exchange interactions are in good agreement with the experimental data.
The low temperature heat capacity C_{p} of Fe_{1-x}Ga_{x} alloys with large magnetostriction has been investigated. The data were analyzed in the standard way using electron ($gamma T$) and phonon ($beta T^{3}$) contributions. The Debye temperature $ Theta_{D}$ decreases approximately linearly with increasing Ga concentration, consistent with previous resonant ultrasound measurements and measured phonon dispersion curves. Calculations of $Theta_{D}$ from lattice dynamical models and from measured elastic constants C_{11}, C_{12} and C_{44} are in agreement with the measured data. The linear coefficient of electronic specific heat $gamma$ remains relatively constant as the Ga concentration increases, despite the fact that the magnetoelastic coupling increases. Band structure calculations show that this is due to the compensation of majority and minority spin states at the Fermi level.
Magnetite (Fe$_{3}$O$_{4}$) is a mixed valent system where electronic conductivity occurs on the B-site (octahedral) iron sublattice of the spinel structure. Below $T_{V}=122$ K, a metal-insulator transition occurs which is argued to arise from the c harge ordering of 2+ and 3+ iron valences on the B-sites (Verwey transition). Inelastic neutron scattering measurements show that optical spin waves propagating on the B-site sublattice ($sim$80 meV) are shifted upwards in energy above $T_{V}$ due to the occurrence of B-B ferromagnetic double exchange in the mixed valent metallic phase. The double exchange interaction affects only spin waves of $Delta_{5}$ symmetry, not all modes, indicating that valence fluctuations are slow and the double exchange is constrained by electron correlations above $T_{V}$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا