ترغب بنشر مسار تعليمي؟ اضغط هنا

This paper outlines the design of `Quest-V, which is implemented as a collection of separate kernels operating together as a distributed system on a chip. Quest-V uses virtualization techniques to isolate kernels and prevent local faults from affecti ng remote kernels. This leads to a high-confidence multikernel approach, where failures of system subcomponents do not render the entire system inoperable. A virtual machine monitor for each kernel keeps track of shadow page table mappings that control immutable memory access capabilities. This ensures a level of security and fault tolerance in situations where a service in one kernel fails, or is corrupted by a malicious attack. Communication is supported between kernels using shared memory regions for message passing. Similarly, device driver data structures are shareable between kernels to avoid the need for complex I/O virtualization, or communication with a dedicated kernel responsible for I/O. In Quest-V, device interrupts are delivered directly to a kernel, rather than via a monitor that determines the destination. Apart from bootstrapping each kernel, handling faults and managing shadow page tables, the monitors are not needed. This differs from conventional virtual machine systems in which a central monitor, or hypervisor, is responsible for scheduling and management of host resources amongst a set of guest kernels. In this paper we show how Quest-V can implement novel fault isolation and recovery techniques that are not possible with conventional systems. We also show how the costs of using virtualization for isolation of system services does not add undue overheads to the overall system performance.
We report the discovery of a low-density exoplanet transiting an 11th magnitude star in the Southern hemisphere. WASP-15b, which orbits its host star with a period P=3.7520656+-0.0000028d has a mass M_p=0.542+-0.050M_J and radius R_p=1.428+-0.077R_J, and is therefore the one of least dense transiting exoplanets so far discovered (rho_p=0.247+-0.035g cm^-3). An analysis of the spectrum of the host star shows it to be of spectral type around F5, with an effective temperature T_eff=6300+-100K and [Fe/H]=-0.17+-0.11.
We report the discovery of a sub-Jupiter mass exoplanet transiting a magnitude V=11.7 host star 1SWASP J030928.54+304024.7. A simultaneous fit to the transit photometry and radial-velocity measurements yield a planet mass M_p=0.53+-0.07M_J, radius R_ p=0.91^{+0.06}_{-0.03}R_J and an orbital period of 3.722465^{+0.000006}_{-0.000008} days. The host star is of spectral type K3V, with a spectral analysis yielding an effective temperature of 4800+-100K and log g=4.45+-0.2. It is amongst the smallest, least massive and lowest luminosity stars known to harbour a transiting exoplanet. WASP-11b is the third least strongly irradiated transiting exoplanet discovered to date, experiencing an incident flux F_p=1.9x10^8 erg s^{-1} cm^{-2} and having an equilibrium temperature T_eq=960+-70K.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا