ترغب بنشر مسار تعليمي؟ اضغط هنا

We measured the polarized optical conductivity of URu$_2$Si$_2$ from room temperature down to 5 K, covering the Kondo state, the coherent Kondo liquid regime, and the hidden-order phase. The normal state is characterized by an anisotropic behavior be tween the ab plane and c axis responses. The ab plane optical conductivity is strongly influenced by the formation of the coherent Kondo liquid: a sharp Drude peak develops and a hybridization gap at 12 meV leads to a spectral weight transfer to mid-infrared energies. The c axis conductivity has a different behavior: the Drude peak already exists at 300 K and no particular anomaly or gap signature appears in the coherent Kondo liquid regime. When entering the hidden-order state, both polarizations see a dramatic decrease in the Drude spectral weight and scattering rate, compatible with a loss of about 50 % of the carriers at the Fermi level. At the same time a density-wave like gap appears along both polarizations at about 6.5 meV at 5 K. This gap closes respecting a mean field thermal evolution in the ab plane. Along the c axis it remains roughly constant and it fills up rather than closing.
We measured the optical conductivity of superconducting LiFeAs. In the superconducting state, the formation of the condensate leads to a spectral-weight loss and yields a penetration depth of 225 nm. No sharp signature of the superconducting gap is o bserved. This suggests that the system is likely in the clean limit. A Drude-Lorentz parametrization of the data in the normal state reveals a quasiparticle scattering rate supportive of spin fluctuations and proximity to a quantum critical point.
375 - Y. M. Dai , B. Xu , B. Shen 2011
We measured the in-plane optical conductivity of a nearly optimally doped (Ba,K)Fe2As2 single crystal with Tc = 39.1 K. Upon entering the superconducting state the optical conductivity below ~20 meV vanishes, strongly suggesting a fully gapped system . A BCS-like fit requires two different isotropic gaps to describe the optical response of this material. The temperature dependence of the gaps and the penetration depth suggest a strong interband coupling, but no impurity scattering induced pair breaking is present. This contrasts to the large residual conductivity observed in optimally doped Ba(Fe,Co)2As2 and strongly supports an s(+/-) gap symmetry for these compounds.
We measured the temperature dependent infrared reflectivity spectra of TbMnO3 with the electric field of light polarized along each of the three crystallographic axes. We analyzed the effect, on the phonon spectra, of the different phase transitions occurring in this material. We show that the antiferromagnetic transition at TN renormalizes the phonon parameters along the three directions. Our data indicate that the electromagnon, observed along the a direction, has an important contribution to the building of the dielectric constant. Only one phonon, observed along the c-axis, has anomalies at the ferroelectric transition. This phonon is built mostly from Mn vibrations, suggesting that Mn displacements are closely related to the formation of the ferroelectric order.
The optical conductivity of Ba(Fe$_{0.92}$Co$_{0.08}$)$_2$As$_2$ shows a clear signature of the superconducting gap, but a simple $s$-wave description fails in accounting for the low frequency response. This task is achieved by introducing an extra D rude peak in the superconducting state representing sub-gap absorption, other than thermally broken pairs. This extra peak and the coexisting $s$-wave response respect the total sum rule indicating a common origin for the carriers. We discuss the possible origins for this absorption as (i) quasiparticles due to pair-breaking from interband impurity scattering in a two band $s_{pm}$ gap symmetry model, which includes (ii) the possible existence of impurity levels within an isotropic gap model; or (iii) an indication that one of the bands is highly anisotropic.
We discuss the first infrared reflectivity measurement on a BiFeO3 single crystal between 5 K and room temperature. The 9 predicted ab-plane E phonon modes are fully and unambiguously determined. The frequencies of the 4 A1 c-axis phonons are found. These results settle issues between theory and data on ceramics. Our findings show that the softening of the lowest frequency E mode is responsible for the temperature dependence of the dielectric constant, indicating that the ferroelectric transition in BiFeO3 is soft-mode driven.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا