ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical conductivity of Ba0.6 K0.4 Fe2 As2 : The effect of in-plane and out-of-plane doping in the superconducting gap

375   0   0.0 ( 0 )
 نشر من قبل Ricardo Lobo
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We measured the in-plane optical conductivity of a nearly optimally doped (Ba,K)Fe2As2 single crystal with Tc = 39.1 K. Upon entering the superconducting state the optical conductivity below ~20 meV vanishes, strongly suggesting a fully gapped system. A BCS-like fit requires two different isotropic gaps to describe the optical response of this material. The temperature dependence of the gaps and the penetration depth suggest a strong interband coupling, but no impurity scattering induced pair breaking is present. This contrasts to the large residual conductivity observed in optimally doped Ba(Fe,Co)2As2 and strongly supports an s(+/-) gap symmetry for these compounds.

قيم البحث

اقرأ أيضاً

225 - Y. H. Kim , P. H. Hor , X. L. Dong 2012
We addressed the inconsistency between the electron mass anisotropy ratios determined by the far-infrared experiments and DC conductivity measurements. By eliminating possible sources of error and increasing the sensitivity and resolution in the far- infrared reflectivity measurement on the single crystalline and on the polycrystalline La1.84Sr0.16CuO4, we have unambiguously identified that the source of the mass anisotropy problem is in the estimation of the free electron density involved in the charge transport and superconductivity. In this study we found that only 2.8 % of the total doping-induced charge density is itinerant at optimal doping. Our result not only resolves the mass anisotropy puzzle but also points to a novel electronic structure formed by the rest of the electrons that sets the stage for the high temperature superconductivity.
The temperature-dependent optical reflectivity and complex transmissivity of an epitaxially grown Ba(Fe$_{0.9}$Co$_{0.1}$)$_2$As$_2$ thin film were measured and the optical conductivity and permittivity evaluated over a wide frequency range. The open ing of the superconducting gap $2Delta_0 = 3.7$ meV below $T_capprox 20$ K is {em directly} observed by a completely vanishing optical conductivity. The temperature and frequency dependent electrodynamic properties of Ba(Fe$_{0.9}$Co$_{0.1}$)$_2$As$_2$ in the superconducting state agree well with the BCS predictions with no nodes in the order parameter. The spectral weight of the condensate $1.94times 10^7 {rm cm}^{-2}$ corresponds to a London penetration depth $lambda_L=3600$ AA.
Little-Parks effect names the oscillations in the superconducting critical temperature as a function of the magnetic field. This effect is related to the geometry of the sample. In this work, we show that this effect can be enhanced and manipulated b y the inclusion of magnetic nanostructures with perpendicular magnetization. These magnetic nanodots generate stray fields with enough strength to produce superconducting vortex-antivortex pairs. So that, the L-P effect deviation from the usual geometrical constrictions is due to the interplay between local magnetic stray fields and superconducting vortices. Moreover, we compare our results with a low-stray field sample (i.e. with the dots in magnetic vortex state) showing how the enhancement of the L-P effect can be explained by an increment of the effective size of the nanodots.
We present a unifying picture of the magnetic in-plane anisotropies of two-dimensional superconductors based on transition metal dichalcogenides. The symmetry considerations are first applied to constrain the form of the conductivity tensor. We hence conclude that the two-fold periodicity of transport distinct from the planar Hall related contributions requires a tensor perturbation. At the same time, the six-fold periodic variation of the critical field results from the Rashba spin-orbit coupling on a hexagonal lattice. We have considered the effect of a weak tensor perturbation on the critical field, gap function, and magneto-conductivity. The latter is studied using the time-dependent Ginzburg-Landau phenomenology. The common origin of the two-fold anisotropy in transport and thermodynamics properties is identified. The scheme constructed here is applied to describe the existing theoretical scenarios from a unified point of view. This allows us to single out the differences and similarities between the suggested approaches.
212 - K. Sugimoto , E. Kaneshita , 2010
We examine the optical conductivity in antiferromagnetic (AFM) iron pnictides by mean-field calculation in a five-band Hubbard model. The calculated spectra are well consistent with the in-plane anisotropy observed in the measurements, where the opti cal conductivity along the direction with the AFM alignment of neighboring spins is larger than that along the ferromagnetic (FM) direction in the low-energy region; however, that along the FM direction becomes larger in the higher-energy region. The difference between the two directions is explained by taking account of orbital characters in both occupied and unoccupied states as well as of the nature of Dirac-type linear dispersions near the Fermi level.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا