ترغب بنشر مسار تعليمي؟ اضغط هنا

The purpose of this note is to provide an existence result for the solution of fully coupled Forward Backward Stochastic Differential Equations (FBSDEs) of the mean field type. These equations occur in the study of mean field games and the optimal control of dynamics of the McKean Vlasov type.
The purpose of this paper is to provide a complete probabilistic analysis of a large class of stochastic differential games for which the interaction between the players is of mean-field type. We implement the Mean-Field Games strategy developed anal ytically by Lasry and Lions in a purely probabilistic framework, relying on tailor-made forms of the stochastic maximum principle. While we assume that the state dynamics are affine in the states and the controls, our assumptions on the nature of the costs are rather weak, and surprisingly, the dependence of all the coefficients upon the statistical distribution of the states remains of a rather general nature. Our probabilistic approach calls for the solution of systems of forward-backward stochastic differential equations of a McKean-Vlasov type for which no existence result is known, and for which we prove existence and regularity of the corresponding value function. Finally, we prove that solutions of the mean-field game as formulated by Lasry and Lions do indeed provide approximate Nash equilibriums for games with a large number of players, and we quantify the nature of the approximation.
Motivated by earlier work on the use of fully-coupled Forward-Backward Stochastic Differential Equations (henceforth FBSDEs) in the analysis of mathematical models for the CO2 emissions markets, the present study is concerned with the analysis of the se equations when the generator of the forward equation has a conservative degenerate structure and the terminal condition of the backward equation is a non-smooth function of the terminal value of the forward component. We show that a general form of existence and uniqueness result still holds. When the function giving the terminal condition is binary, we also show that the flow property of the forward component of the solution can fail at the terminal time. In particular, we prove that a Dirac point mass appears in its distribution, exactly at the location of the jump of the binary function giving the terminal condition. We provide a detailed analysis of the breakdown of the Markovian representation of the solution at the terminal time.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا