ترغب بنشر مسار تعليمي؟ اضغط هنا

50 - Ran Qi , Zhe-yu Shi , 2021
In this letter we study how fast the energy density of a quantum gas can increase in time, when the inter-atomic interaction characterized by the $s$-wave scattering length $a_text{s}$ is increased from zero with arbitrary time dependence. We show th at, at short time, the energy density can at most increase as $sqrt{t}$, which can be achieved when the time dependence of $a_text{s}$ is also proportional to $sqrt{t}$, and especially, a universal maximum energy growth rate can be reached when $a_text{s}$ varies as $2sqrt{hbar t/(pi m)}$. If $a_text{s}$ varies faster or slower than $sqrt{t}$, it is respectively proximate to the quench process and the adiabatic process, and both result in a slower energy growth rate. These results are obtained by analyzing the short time dynamics of the short-range behavior of the many-body wave function characterized by the contact, and are also confirmed by numerical solving an example of interacting bosons with time-dependent Bogoliubov theory. These results can also be verified experimentally in ultracold atomic gases.
We refine the OrbNet model to accurately predict energy, forces, and other response properties for molecules using a graph neural-network architecture based on features from low-cost approximated quantum operators in the symmetry-adapted atomic orbit al basis. The model is end-to-end differentiable due to the derivation of analytic gradients for all electronic structure terms, and is shown to be transferable across chemical space due to the use of domain-specific features. The learning efficiency is improved by incorporating physically motivated constraints on the electronic structure through multi-task learning. The model outperforms existing methods on energy prediction tasks for the QM9 dataset and for molecular geometry optimizations on conformer datasets, at a computational cost that is thousand-fold or more reduced compared to conventional quantum-chemistry calculations (such as density functional theory) that offer similar accuracy.
Particular types of plankton in aquatic ecosystems can coordinate their motion depending on the local flow environment to reach regions conducive to their growth or reproduction. Investigating their swimming strategies with regard to the local enviro nment is important to obtain in-depth understanding of their behavior in the aquatic environment. In the present research, to examine an impact of the shape and gravity on a swimming strategy, plankton is considered as settling swimming particles of ellipsoidal shape. The Q-learning approach is adopted to obtain swimming strategies for smart particles with a goal of efficiently moving upwards in a two-dimensional steady flow. Strategies obtained from reinforcement learning are compared to those of naive gyrotactic particles that is modeled considering the behavior of realistic plankton. It is found that elongation of particles improves the performance of upward swimming by facilitating particles resistance to the perturbation of vortex. In the case when the settling velocity is included, the strategy obtained by reinforcement learning has similar performance to that of the naive gyrotactic one, and they both align swimmers in upward direction. The similarity between the strategy obtained from machine learning and the biological gyrotactic strategy indicates the relationship between the aspherical shape and settling effect of realistic plankton and their gyrotactic feature.
We demonstrate a multipurpose microwave frequency identification solution that is implemented based on a photonic integrated chip and is able to identify different types of microwave signals, including single-frequency, multiple-frequency, chirped an d frequency-hopping microwave signals. The key component is a thermally-tunable high-Q-factor silicon microring resonator which is used to implement the frequency-to-time mapping. The frequency measurement range is ultra-wide, from 1 to 30 GHz, with a high resolution of 375 MHz and a low measurement error of 237.3 MHz. This demonstration opens the door for future fully integrated solution for high speed, wideband and multipurpose signal identification with high resolution.
Surface plasmon polaritons have attracted varies of interests due to its special properties, especially in the polarization-controlled devices. Typically, the polarization-controlled devices include directional coupling, focusing lens and plasmonic v ortex lens, and almost all of them are controlled by the input circularly polarized light or the linearly polarized light. We present a novel device that realize the functions of directional coupling and focusing with high polarization extinction ratio for arbitrary spin of input light. This device offers opportunities for polarization sensing, polarization splitting and polarization-multiplexed near-field images and surface plasmon holography in the future.
Controlling the directionality of surface plasmon polaritons (SPPs) has been widely studied, while the direction of SPPs was always switched by orthogonal polarizations in the reported methods. Here, we present a scheme to control the directionality of SPPs by arbitrary spin polarizations. Extremely, the device can split two quite adjacent polarization components to two opposite directions. The versatility of the presented design scheme can offer opportunities for polarization sensing, polarization splitting and polarization-controlled plasmonic devices.
141 - Jianwen Jie , Ran Qi 2015
In this paper, we provide the two-body exact solutions of two dimensional (2D) Schr{o}dinger equation with isotropic $pm 1/r^3$ interactions. Analytic quantum defect theory are constructed base on these solutions and are applied to investigate the sc attering properties as well as two-body bound states of ultracold polar molecules confined in a quasi-2D geometry. Interestingly, we find that for the attractive case, the scattering resonance happens simultaneously in all partial waves which has not been observed in other systems. The effect of this feature on the scattering phase shift across such resonances is also illustrated.
110 - Ran Qi , Xiwen Guan 2012
We study strong interaction effects in a one-dimensional (1D) Boson gas across a narrow confinement induced resonance (CIR). In contrast to the zero range potential, the 1D two-body interaction in the narrow CIR can be written as a polynomial of deri vative $delta$-function interaction on many-body level. Using the asymptotic Bethe ansatz, we find that the low energy physics of this many-body problem is described by the Tomonaga-Luttinger liquid where the Luttinger parameters are essentially modified by an effective finite range parameter $v$. This parameter drastically alters quantum criticality and universal thermodynamics of the gas. In particular, it drives the Tonks-Girardeau (TG) gas from non-mutual Fermi statistics to mutual statistics or to a more exclusive super TG gas. This novel feature is further discussed in terms of the breathing mode which is experimentally measurable.
81 - Ran Qi , Zhe-Yu Shi , Hui Zhai 2012
It is known from the solution of the two-body problem that an anisotropic dipolar interaction can give rise to s-wave scattering resonances, which are named as dipolar interaction induced resonaces (DIIR). In this letter, we study zero-temperature ma ny-body physics of a two-component Fermi gas across a DIIR. In the low-density regime, it is very striking that the resulting pairing order parameter is a nearly isotropic singlet pairing and the physics can be well described by an s-wave resonant interaction potential with finite range corrections, despite of the anisotropic nature of dipolar interaction. The pairing energy is as strong as a unitary Fermi gas nearby a magnetic Feshbach resonance. In the high density regime, the anisotropic effect plays an important role. We find phase transitions from singlet pairing to a state with mixed singlet and triplet pairing, and then from mixed pairing to pure triplet pairing. The state with mixed pairing spontaneously breaks the time-reversal symmetry.
117 - Ran Qi , Hui Zhai 2011
We address the phase of a highly polarized Fermi gas across a narrow Feshbach resonance starting from the problem of a single down spin fermion immersed in a Fermi sea of up spins. Both polaron and pairing states are considered using the variational wave function approach, and we find that the polaron to pairing transition will take place at the BCS side of the resonance, strongly in contrast to a wide resonance where the transition is located at the BEC side. For pairing phase, we find out the critical strength of repulsive interaction between pairs above which the mixture of pairs and fermions will not phase separate. Therefore, nearby a narrow resonance, it is quite likely that magnetism can coexist with s-wave BCS superfluidity at large Zeeman field, which is a remarkable property absent in conventional BCS superconductors (or fermion pair superfluids).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا