ترغب بنشر مسار تعليمي؟ اضغط هنا

118 - R.A. Osten , C. Melis , B. Stelzer 2015
We report upper limits to the radio and X-ray emission from the newly discovered ultracool dwarf binary WISE J104915.57$-$531906.1 (Luhman 16AB). As the nearest ultracool dwarf binary (2 pc), its proximity offers a hefty advantage to studying plasma processes in ultracool dwarfs which are more similar in gross properties (radius, mass, temperature) to the solar system giant planets than stars. The radio and X-ray emission upper limits from the Australia Telescope Compact Array (ATCA) and Chandra observations, each spanning multiple rotation periods, provide the deepest fractional radio and X-ray luminosities to date on an ultracool dwarf, with $log{(L_{rm r, u}/L_{rm bol}) [Hz^{-1}]} < -18.1$ (5.5 GHz), $log{(L_{rm r, u}/L_{rm bol}) [Hz^{-1}]} < -17.9$ (9 GHz), and $log{(L_{rm x}/L_{rm bol})} < -5.7$. While the radio upper limits alone do not allow for a constraint on the magnetic field strength, we limit the size of any coherently emitting region in our line of sight to less than 0.2% of the radius of one of the brown dwarfs. Any source of incoherent emission must span less than about 20% of the brown dwarf radius, assuming magnetic field strengths of a few tens to a few hundred Gauss. The fast rotation and large amplitude photometric variability exhibited by the T dwarf in the Luhman 16AB system are not accompanied by enhanced nonthermal radio emission, nor enhanced heating to coronal temperatures, as observed on some higher mass ultracool dwarfs, confirming the expected decoupling of matter and magnetic field in cool neutral atmospheres.
We utilize the Sagittarius Window Eclipsing Extrasolar Planet Search (SWEEPS) HST/ACS dataset for a Deep Rapid Archival Flare Transient Search (DRAFTS) to constrain the flare rate toward the older stellar population in the Galactic bulge. During 7 da ys of monitoring 229,293 stars brighter than V=29.5, we find evidence for flaring activity in 105 stars between V=20 and V=28. We divided the sample into non-variable stars and variable stars whose light curves contain large-scale variability. The flare rate on variable stars is sim 700 times that of non-variable stars, with a significant correlation between the amount of underlying stellar variability and peak flare amplitude. The flare energy loss rates are generally higher than those of nearby well-studied single dMe flare stars. The distribution of proper motions is consistent with the flaring stars being at the distance and age of the Galactic bulge. If they are single dwarfs, they span a range of approx 1.0 - 0.25Modot. A majority of the flaring stars exhibit periodic photometric modulations with P <3d. If these are tidally locked magnetically active binary systems, their fraction in the bulge is enhanced by a factor of sim20 compared to the local value. These stars may be useful for placing constraints on the angular momentum evolution of cool close binary stars. Our results expand the type of stars studied for flares in the optical band, and suggest that future sensitive optical time-domain studies will have to contend with a larger sample of flaring stars than the M dwarf flare stars usually considered.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا