ترغب بنشر مسار تعليمي؟ اضغط هنا

Electrically-neutral massive color-singlet and color-octet vector bosons, which are often predicted in Beyond the Standard Model theories, have the potential to be discovered as dijet resonances at the LHC. A color-singlet resonance that has leptopho bic couplings needs further investigation to be distinguished from a color-octet one. In previous work, we introduced a method for discriminating between the two kinds of resonances when their couplings are flavor-universal, using measurements of the dijet resonance mass, total decay width and production cross-section. Here, we describe an extension of that method to cover a more general scenario, in which the vector resonances could have flavor non-universal couplings; essentially, we incorporate measurements of the heavy-flavor decays of the resonance into the method. We present our analysis in a model-independent manner for a dijet resonance with mass 2.5-6.0 TeV at the LHC with $sqrt{s}=14$ TeV and integrated luminosities 30, 100, 300 and 1000 ${rm fb}^{-1}$, and show that the measurements of the heavy-flavor decays should allow conclusive identification of the vector boson. Note that our method is generally applicable even for a Z boson with non-Standard invisible decays. We include an appendix of results for various resonance couplings and masses to illustrate how well each observable must be measured to distinguish colorons from Z bosons.
We analyze the phenomenology of the top-pion and top-Higgs states in models with strong top dynamics, and translate the present LHC searches for the Standard Model Higgs into bounds on these scalar states. We explore the possibility that the new stat e at a mass of approximately 125 GeV observed at the LHC is consistent with a neutral pseudoscalar top-pion state. We demonstrate that a neutral pseudoscalar top-pion can generate the diphoton signal at the observed rate. However, the region of model parameter space where this is the case does not correspond to classic topcolor-assisted technicolor scenarios with degenerate charged and neutral top-pions and a top-Higgs mass of order twice the top mass; rather, additional isospin violation would need to be present and the top dynamics would be more akin to that in top seesaw models. Moreover, the interpretation of the new state as a top-pion can be sustained only if the ZZ (four-lepton) and WW (two-lepton plus missing energy) signatures initially observed at the 3? level decline in significance as additional data is accrued.
In this note we compute the flavor-dependent chiral-logarithmic corrections to the decay Z to b bbar in the three site Higgsless model. We compute these corrections diagrammatically in the gaugeless limit in which the electroweak couplings vanish. We also compute the chiral-logarithmic corrections to the decay Z to b bbar using an RGE analysis in effective field theory, and show that the results agree. In the process of this computation, we compute the form of the chiral current in the gaugeless limit of the three-site model, and consider the generalization to the N-site case. We elucidate the Ward-Takahashi identities which underlie the gaugeless limit calculation in the three-site model, and describe how the result for the Z to b bbar amplitude is obtained in unitary gauge in the full theory. We find that the phenomenological constraints on the three-site Higgsless model arising from measurements of Z to b bbar are relatively mild, requiring only that the heavy Dirac fermion be heavier than 1 TeV or so, and are satisfied automatically in the range of parameters allowed by other precision electroweak data.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا